

2023 – 2024 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

AREA 2 POND, AREA 3 POND, AND AREA 4 POND LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 0210309-000 July 2024

Table of Contents

				Page
List o	of Tabl	es	1/Eight Control of the control of th	ii
List o	of Figu	res	PRO 7/21/21/25	ii
List o	of Atta	chmen	ts TANSAS O	iii
1.	Intro	ductio	n NAL GOVERN	1
	1.1	40 CFR 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6	§ 257.90(E)(6) SUMMARY 40 CFR § 257.90(e)(6)(i) — Initial Monitoring Program 40 CFR § 257.90(e)(6)(ii) — Final Monitoring Program 40 CFR § 257.90(e)(6)(iii) — Statistically Significant Increases 40 CFR § 257.90(e)(6)(iv) — Statistically Significant Levels 40 CFR § 257.90(e)(6)(v) — Selection of Remedy 40 CFR § 257.90(e)(6)(vi) — Remedial Activities	1 1 1 2 2 3 3
2.	40 CI	FR § 25	7.90 Applicability	4
	2.1 2.2 2.3	40 CFR 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	8 8	4 4 4 5 5 5 6 6 6 7 7

Revision No.	Date	Notes

i

List of Tables

Table No.	Title
1	Statistically Significant Levels of Appendix IV Constituents – March and September 2023 Sampling Events
II	Summary of Analytical Results – Assessment Monitoring
III	Summary of Analytical Results: 2023 – 2024 Nature and Extent Monitoring
IV	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – March 2023 Sampling Event
V	Assessment Groundwater Monitoring – Detected Appendix IV GWPS - September 2023 Sampling Event

List of Figures

Figure No.	Title
1	Ash Ponds (Inactive) CCR Compliance Monitoring Well Location Map
2	Ash Ponds (Inactive) Nature and Extent Monitoring Well Location Map
3	Ash Ponds (Inactive) Groundwater Potentiometric Elevation Contour Map – September 7, 2023
4	Ash Ponds (Inactive) Groundwater Potentiometric Elevation Contour Map – December 11, 2023
5	Ash Ponds (Inactive) Groundwater Potentiometric Elevation Contour Map – March 5, 2024

List of Attachments

Attachment 1 – Statistical Analyses

- 1-1 March 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation
- 1-2 September 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

- 2-1 September 2023 Semiannual Sampling Event Laboratory Analytical Reports
- 2-2 December 2023 Annual Assessment Sampling Event Laboratory Analytical Report
- 2-3 March 2024 Semiannual Sampling Event Laboratory Analytical Reports

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Lawrence Energy Center Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds) consistent with applicable sections of Title 40 Code of Federal Regulations §§ 257.90 through 257.98, and describes activities conducted from July 2023 through June 2024 and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report for the LEC inactive Ash Ponds is, to the best of my knowledge, accurate and complete.

Signed: _

Professional Geologist

Print Name: Mark Nicholls

Kansas License No.: Professional Geologist No. 881

Title: Technical Expert 2

Company: Haley & Aldrich, Inc.

1. Introduction

This 2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds) at the Lawrence Energy Center (LEC), monitored by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Title 40 Code of Federal Regulations (40 CFR) § 257.90(e). This Annual Report documents the groundwater monitoring system for the inactive Ash Ponds consistent with applicable sections of § 257.90 through § 257.98, and describes activities conducted in the prior calendar year (July 2022 through June 2023) and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in **bold italic font**, followed by a narrative description of how each Rule requirement has been met.

Evergy prepared and placed in the facility's operating record a notification of intent to initiate closure of the inactive Ash Ponds by December 17, 2015. Due to the USEPA Extension of Compliance Deadlines for Certain Inactive Surface Impoundments, Response to Partial Vacatur effective October 4, 2016, in accordance with the requirement under § 257.100(e)(1), the alternative reporting time frames specified in § 257.100(e)(2) through (6) are applicable for the inactive Ash Ponds.

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (July 1, 2023), the inactive Ash Ponds were operating under an assessment monitoring program in compliance with 40 CFR § 257.95 for all constituents, except arsenic, lithium, and molybdenum. An corrective measures assessment (CMA) was conducted in accordance with 40 CFR § 257.96 for arsenic, lithium, and molybdenum, which continue to be monitored under an assessment monitoring program in accordance with 40 CFR § 257.96(b).

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (June 30, 2024), the inactive Ash Ponds were operating under an assessment monitoring program in compliance with 40 CFR § 257.95 for all constituents, except arsenic, lithium, and molybdenum. A CMA was conducted in accordance with 40 CFR § 257.96 for arsenic, lithium, and molybdenum, which continue to be monitored under an assessment monitoring program in accordance with 40 CFR § 257.96(b).

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a)

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

The inactive Ash Ponds are operating under an assessment monitoring program; therefore, no statistical evaluations were completed on Appendix III constituents from July 2023 through June 2024.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b)

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on January 13, 2020 for the inactive Ash Ponds with a notification establishing assessment monitoring provided on February 12, 2020 to meet the requirements of 40 CFR § 257.95. The inactive Ash Ponds remained in assessment monitoring from July 2023 through June 2024, with a corrective measures program implemented for arsenic, lithium, and molybdenum in accordance with 40 CFR § 257.96.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

Statistically significant levels (SSL) above the groundwater protection standards (GWPS) identified from July 2023 through June 2024 for the March 2023 and September 2023 semiannual assessment monitoring sampling events are listed in Table I. The statistical evaluation reports for semiannual assessment monitoring sampling events from March 2023 and September 2023 were completed in July 2023 and February 2024, respectively, and are included as Attachment 1.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

A CMA was initiated on October 12, 2020 for arsenic, lithium, and molybdenum at the inactive Ash Ponds.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

A public meeting was held on March 12, 2024 to discuss the results of the CMA with interested and affected parties of the public. Evergy notified the public of the public meeting via public notice and in local newspapers beginning on February 5, 2024. The public meeting was held at the Douglas County Fairgrounds located at 2120 Harper Street in Lawrence, Kansas between 6 p.m. and 9 p.m.

The public meeting was held at least 30 days prior to the selection of remedy in accordance with § 257.96(e).

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

The CMA was completed on March 11, 2021 for the inactive Ash Ponds.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

A remedy was not selected during the July 2023 through June 2024 reporting period for arsenic, lithium, and molybdenum at the inactive Ash Ponds.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities have been initiated from July 2023 through June 2024; therefore, no demonstration or certification is applicable for this unit.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.98, except as provided in paragraph (g) of this section.

Evergy has installed and certified a multi-unit groundwater monitoring system at the LEC inactive Ash Ponds. The inactive Ash Ponds are subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the LEC inactive Ash Ponds as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed from July 2023 through June 2024.

2.2.1 Status of the Groundwater Monitoring Program

Appendix IV SSLs were detected above the GWPS for arsenic, lithium, and molybdenum during the March 2020 and September 2020 semiannual assessment monitoring sampling events. Therefore, a CMA was initiated. The selection of remedy required under § 257.97 was ongoing from July 2023 through June 2024. Evergy is currently implementing an assessment monitoring program for all other constituents.

2.2.2 Key Actions Completed

The 2022 – 2023 Annual Groundwater Monitoring and Corrective Action Report was completed in July 2023 for the period from July 2022 through June 2023. Statistical evaluation was completed in July 2023 on analytical data from the March 2023 semiannual assessment monitoring sampling event. The statistical evaluation indicated Appendix IV SSLs above the GWPS for arsenic, lithium, and molybdenum at select downgradient monitoring wells, consistent with previous statistical evaluations.

A semiannual assessment monitoring sampling event was completed in September 2023 for detected Appendix IV constituents identified from the December 2022 annual assessment monitoring sampling event. Statistical evaluation was completed in February 2024 on analytical data from the September 2023 semiannual assessment monitoring sampling event.

Pursuant to §257.95(g), groundwater characterization samples were collected in September 2023 and March 2024 to assist in the determination of the nature and extent of Appendix IV SSLs in groundwater wells. Semiannual status reports for the CMA were completed in September 2023 and March 2024 pursuant to §257.97(a).

An annual assessment monitoring sampling event was completed on December 11, 2023 to identify detected Appendix IV constituents for subsequent semiannual sampling events in March 2024 and planned for September 2024. Semiannual assessment monitoring sampling was completed in March 2024 for detected Appendix IV constituents identified during the December 2023 annual monitoring event. Statistical evaluation of the results from the March 2024 semiannual assessment monitoring sampling event are due to be completed in July 2024 and will be reported in the next annual report.

2.2.3 Problems Encountered

One problem encountered during groundwater monitoring activities from July 2023 through June 2024 consisted of a laboratory analytical error the provided elevated reporting limits for cobalt during the March 2024 semiannual detection monitoring sampling event. Verification samples were collected from monitoring wells MW-39, MW-40, and MW-L for analysis of cobalt in May 2024. This was the only issue that needed to be addressed from July 2023 through June 2024.

2.2.4 Actions to Resolve Problems

The resolution to problems encountered from July 2023 through June 2024 included collection of a verification groundwater sample from MW-39, MW-40, and MW-L, as described above. The analytical results for this sampling event were revised accordingly. No other problems were encountered at the inactive Ash Ponds from July 2023 through June 2024; therefore, no actions to resolve the problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for July 2024 through June 2025 include this Annual Report, statistical evaluation of semiannual assessment monitoring analytical data collected in March 2024, semiannual assessment

monitoring and subsequent statistical evaluations, and annual assessment monitoring. The nature and extent investigation will continue into the next calendar year (July 2024 through June 2025). The next semiannual status report for the CMA is due to be completed in September 2024. Evergy is also continuing to complete additional steps to characterize the nature and extent of arsenic, lithium, and molybdenum in groundwater at the inactive Ash Ponds and is working toward the selection of remedy in the next calendar year (July 2024 through June 2025).

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the LEC inactive Ash Ponds is included in this report as Figure 1. A map showing monitoring wells utilized for the nature and extent of the inactive Ash Ponds is presented in Figure 2.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned from July 2023 through June 2024.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), three independent assessment monitoring samples from each background and downgradient monitoring well were collected from July 2023 through June 2024. A summary, including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the inactive Ash Ponds, is presented in Table II of this report with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event from July 2023 through June 2024 are provided in Figures 3 through 5.

A summary including sample names, dates of sample collection, field parameters, and validated groundwater monitoring data obtained for the nature and extent investigation for the inactive Ash Ponds is provided in Table III of this report, with corresponding laboratory analytical reports provided in Attachment 2.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was initiated on January 13, 2020 with a notification establishing assessment monitoring provided on February 12, 2020 to meet the requirements of 40 CFR § 257.95. A CMA was implemented on October 12, 2020 for arsenic, lithium, and molybdenum in accordance with 40 CFR § 257.96. The inactive Ash Ponds remained in assessment monitoring from July 2023 through June 2024 for all other constituents. Arsenic, lithium, and molybdenum continue to be monitored under the assessment monitoring program in accordance with 40 CFR § 257.96(b).

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with 40 CFR §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in 40 CFR §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed from July 2023 through June 2024.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternate source demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since January 13, 2020. Three rounds of assessment monitoring sampling were completed between July 2023 and June 2024. Analytical results for both downgradient and upgradient wells are provided in Table II. The background concentrations (upper tolerance limits) and GWPSs established for detected Appendix IV constituents

for the inactive Ash Ponds are included in Tables IV and V. The background concentrations and GWPSs provided in Tables IV and V were utilized for the statistical evaluations completed from July 2023 through June 2024 for the March 2023 and September 2023 semiannual assessment monitoring sampling events, respectively.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

The inactive Ash Ponds remained in assessment monitoring during July 2023 through June 2024 for all constituents, other than arsenic, lithium, and molybdenum, which continue to be monitored under an assessment monitoring program in accordance with 40 CFR § 257.96(b).

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

On January 10, 2021, Evergy demonstrated the need for additional time beyond the regulatory timeline period of 90 days to complete the CMA. The Demonstration and Certification of Need for 60-Day Extension was provided in Attachment 2 of the 2020 – 2021 Annual Groundwater Monitoring and Corrective Actions report for the LEC inactive Ash Ponds.

TABLES

TABLE I STATISTICALLY SIGNIFICANT LEVELS OF APPENDIX IV CONSTITUENTS MARCH AND SEPTEMBER 2023 SAMPLING EVENTS

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

Constituent	Sampling Event	Well ID	Groundwater Protection Standard (mg/L)
		MW-38	
	March 2023	MW-40	
	IVIAICII 2023	MW-K	
		MW-L	
Arsenic		MW-38	0.010
		MW-39	
	September 2023	MW-40	
		MW-K	
		MW-L	
		MW-38	
	Marrah 2022	MW-40	
	March 2023	MW-K	
Lithium		MW-L	0.040
Lithium		MW-38	0.040
	Cantanih ar 2022	MW-40	
	September 2023	MW-K	
		MW-L	1
N. d. b. d. a. a. a. a. a.	March 2023	MW-39	0.152
Molybdenum	September 2023	MW-39	0.153

Notes:

mg/L = milligrams per liter

SUMMARY OF ANALYTICAL RESULTS - ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

		Upgradient							Downgradient					
Location		MW-37			MW-38			MW-	39			MW-	-40	
Measure Point (TOC)		833.290			832.626			830.6	515			831.3	358	
Sample Name	MW-37-090723	MW-37-121123	MW-37-030424	MW-38-090723	MW-38-121123	MW-38-030524	MW-39-090723	MW-39-121123	MW-39-030524	MW-39-051324	MW-40-090723	MW-40-121123	MW-40-030524	MW-40-051324
Sample Date	09/07/2023	12/11/2023	03/04/2024	09/07/2023	12/11/2023	03/05/2024	09/07/2023	12/11/2023	03/05/2024	05/13/2024	09/07/2023	12/11/2023	03/05/2024	05/13/2024
Final Lab Report Date	9/25/2023	12/27/2023	3/19/2024	9/25/2023	12/27/2023	3/19/2024	9/25/2023	12/27/2023	3/19/2024	5/15/2024	9/25/2023	12/27/2023	3/19/2024	5/15/2024
Final Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Final Radiation Lab Report Date	9/29/2023	1/2/2024	3/24/2024	9/29/2023	1/2/2024	3/24/2024	9/29/2023	1/2/2024	3/24/2024	N/A	9/29/2023	1/2/2024	3/24/2024	N/A
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lab Data Reviewed and Accepted	12/19/2023	3/5/2024	7/10/2024	12/19/2023	3/5/2024	7/10/2024	12/19/2023	3/5/2024	7/10/2024	7/10/2024	12/19/2023	3/5/2024	7/10/2024	7/10/2024
Depth to Water (ft btoc)	15.40	12.94	11.66	17.68	17.51	17.18	16.39	16.06	16.05	14.94	16.92	16.58	16.50	15.49
Temperature (Deg C)	15.7	12.74	15.60	22.03	13.53	13.05	20.19	14.06	13.62	18.25	19.94	14.64	14.69	19.07
Conductivity (µS/cm)	1610	1460	1480	1820	1710	1600	1350	3520	3360	3170	1590	3120	3060	3040
Turbidity (NTU)	1.1	2.3	81.1	51.5	3.0	23.6	0.1	0.8	0.0	0.0	22.0	1.8	0.0	0.0
pH , Field (su)	6.81	6.80	6.88	7.44	7.37	7.45	7.24	7.24	7.28	7.13	7.04	7.29	7.28	7.17
Dissolved Oxygen, Field (mg/L)	1.92	0.05	0.00	0.00	0.00	0.93	0.03	0.00	0.00	0.00	0.03	0.00	0.00	0.10
ORP, Field (mV)	-116	-118	-114	-157	-155	-140	-48	-60	-59	-73	-128	-140	-136	-144
Boron, Total (mg/L)	1.8	-	1.6	4.6	-	3.5	4.6	-	4.5	-	3.3	-	2.9	-
Calcium, Total (mg/L)	232	-	239	201	-	166	547	-	474	-	473	-	440	-
Chloride (mg/L)	56.4	-	57.7	111	-	99.3	321	-	350	-	13.0	-	284	-
Fluoride (mg/L)	< 0.20	-	< 0.20	3.7	-	2.8	1.3	-	1.8	-	< 0.20	-	1.6	-
Sulfate (mg/L)	280	-	60.5	668	-	168	< 1.0	-	1590	-	< 1.0	-	1260	-
pH (su)	6.9	-	7.0	7.6	-	7.6	7.3	-	7.1	-	7.1	-	7.2	-
TDS (mg/L)	1080	-	1010	1580	-	1060	3410	-	1970	-	2670	-	1850	-
Antimony, Total (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-
Arsenic (mg/L)	0.0045	0.0046	0.0076	0.026	0.018	0.018	0.011	0.010	0.011	-	0.015	0.015	0.014	-
Barium, Total (mg/L)	0.077	0.073	0.090	0.049	0.042	0.053	0.029	0.029	0.029	-	0.035	0.035	0.034	-
Beryllium, Total (mg/L)	-	< 0.00050	ī	-	< 0.00050	ī	1	< 0.00050	-	-	1	< 0.00050	-	-
Cadmium, Total (mg/L)	-	< 0.00050	ı	-	< 0.00050	-	-	< 0.00050	-	-	-	< 0.00050	-	-
Chromium, Total (mg/L)	-	< 0.0010	ī	-	< 0.0010	ī	1	< 0.0010	-	-	1	< 0.0010	-	-
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0011	< 0.0050	0.0011	< 0.0010	< 0.0010	< 0.0020	< 0.0010
Lead, Total (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-
Lithium, Total (mg/L)	0.023	0.019	0.030	0.052	0.041	0.052	0.037	0.036	0.048	-	0.043	0.039	0.051	-
Molybdenum, Total (mg/L)	0.076	0.071	0.070	0.085	0.078	0.065	0.18	0.16	0.15	-	0.059	0.056	0.056	-
Selenium, Total (mg/L)	-	< 0.0010	ı	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-
Thallium, Total (mg/L)	-	< 0.0010	ī	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-
Mercury, Total (mg/L)	-	< 0.00020	ı	-	< 0.00020	-	-	< 0.00020	-	-	-	< 0.00020	-	-
Fluoride (mg/L)	< 0.20	0.46	< 0.20	3.7	3.7	2.8	1.3	1.7	1.8	-	< 0.20	1.3	1.6	-
Radium-226 & 228 Combined (pCi/L)	0.984 ± 0.900 (1.64)	0.884 ± 1.00 (1.91)	0.994 ± 1.09 (2.06)	1.37 ± 1.11 (1.87)	1.31 ± 1.17 (1.99)	0.958 ± 1.30 (2.44)	0.872 ± 1.04 (2.03)	1.18 ± 1.00 (1.79)	1.07 ± 1.16 (2.13)	-	1.35 ± 1.06 (1.75)	1.62 ± 1.01 (1.56)	0.907 ± 1.16 (2.16)	-
Notes:														

Radiological results are presented as activity plus or minus uncertainty with minimum detectable concentration (MDC).

Bold value: Detection above laboratory reporting limit or MDC.

μS/cm = micro Siemens per centimeter

Deg C = degrees Celsius ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

SUMMARY OF ANALYTICAL RESULTS - ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

Location					Downgradient (co	ontinued)				
Location			MW-K					MW-L		
Measure Point (TOC)			842.6					843.05		
Sample Name	MW-K-090723	MW-K-121123	LEC IAP-DUP-121123	MW-K-030524	LEC IAP-DUP-030524	MW-L-090723	LEC IAP-DUP-090723	MW-L-121123	MW-L-030524	MW-L-051324
Sample Date	09/07/2023	12/11/2023	12/11/2023	03/05/2024	03/05/2024	09/07/2023	09/07/2023	12/11/2023	03/05/2024	05/13/2024
Final Lab Report Date	9/25/2023	12/27/2023	12/27/2023	3/19/2024	3/19/2024	9/25/2023	9/25/2023	12/27/2023	3/19/2024	5/15/2024
Final Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Final Radiation Lab Report Date	9/29/2023	1/2/2024	1/2/2024	3/24/2024	3/24/2024	9/29/2023	9/29/2023	1/2/2024	3/24/2024	N/A
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lab Data Reviewed and Accepted	12/19/2023	3/5/2024	3/5/2024	7/10/2024	7/10/2024	12/19/2023	12/19/2023	3/5/2024	7/10/2024	7/10/2024
Depth to Water (ft btoc)	12.74	12.69	12.69	12.48	12.48	17.90	-	17.83	17.76	16.66
Temperature (Deg C)	18.13	15.15	-	14.22	-	16.82	=	14.71	14.47	17.45
Conductivity (µS/cm)	1620	1890	-	1770	-	4380	-	4570	4290	4000
Turbidity (NTU)	24.4	4.90	-	48.5	=	12.1	=	7.30	2.0	0
pH , Field (su)	7.70	7.52	-	7.57	-	7.29	-	7.26	7.36	7.22
Dissolved Oxygen, Field (mg/L)	0.30	0.00	-	0.48	-	0.80	-	0.00	0.00	0
ORP, Field (mV)	-182	-177	-	-171	=	-165	-	-137	-135	-157
Boron, Total (mg/L)	1.9	-	-	1.8	1.8	2.4	2.4	-	2.4	-
Calcium, Total (mg/L)	207	-	-	192	199	485	481	-	429	-
Chloride (mg/L)	108	-	-	117	147	762	775	-	452	-
Fluoride (mg/L)	2.6	-	-	2.7	2.7	2.5	2.5	-	2.6	-
Sulfate (mg/L)	444	-	-	157	173	1860	2430	-	1490	-
pH (su)	7.7	-	-	7.7	7.7	7.2	7.2	-	7.3	-
TDS (mg/L)	1400	-	-	1250	1240	4340	6720	-	1770	-
Antimony, Total (mg/L)	-	< 0.0010	< 0.0010	-	-	-	=	< 0.0010	=	-
Arsenic (mg/L)	0.083	0.056	0.056	0.073	0.071	0.027	0.027	0.026	0.029	-
Barium, Total (mg/L)	0.048	0.043	0.044	0.046	0.047	0.035	0.035	0.032	0.029	-
Beryllium, Total (mg/L)	-	< 0.00050	< 0.00050	-	-	-	-	< 0.00050	-	-
Cadmium, Total (mg/L)	-	< 0.00050	< 0.00050	-	-	-	=	< 0.00050	=	-
Chromium, Total (mg/L)	-	< 0.0010	< 0.0010	-	-	-	-	< 0.0010	-	-
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010
Lead, Total (mg/L)	-	< 0.0010	< 0.0010	-	-	-	-	< 0.0010	-	-
Lithium, Total (mg/L)	0.048	0.040	0.042	0.050	0.050	0.090	0.086	0.076	0.089	-
Molybdenum, Total (mg/L)	0.021	0.021	0.022	0.022	0.020	0.047	0.048	0.044	0.048	-
Selenium, Total (mg/L)	-	< 0.0010	< 0.0010	-	-	-	-	< 0.0010	-	-
Thallium, Total (mg/L)	-	< 0.0010	< 0.0010	-	-	-	-	< 0.0010	-	-
Mercury, Total (mg/L)	-	< 0.00020	< 0.00020	-	-	-	-	< 0.00020	-	-
Fluoride (mg/L)	2.6	3.5	3.5	2.7	2.7	2.5	2.5	3.2	2.6	-
Radium-226 & 228 Combined (pCi/L)	1.23 ± 0.835 (1.59)	1.26 ± 0.885 (1.49)	0.864 ± 0.742 (1.23)	0.644 ± 1.04 (2.06)	0.651 ± 0.876 (1.71)	1.27 ± 0.955 (1.63)	0.716 ± 0.822 (1.57)	1.73 ± 0.835 (1.45)	1.13 ± 1.05 (1.13)	-
	•	•		•	•		-	-	•	

Notes:

Radiological results are presented as activity plus or minus uncertainty with minimum detectable concentration (MDC).

Bold value: Detection above laboratory reporting limit or MDC.

μS/cm = micro Siemens per centimeter

Deg C = degrees Celsius ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit

TDS = total dissolved solids

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER **INACTIVE ASH PONDS** LAWRENCE, KANSAS

Description Company	L		Up	gradient		Downgradient								
Semple Robes	Location	MW-37 MW-106			V-106	M	IW-38		MW-39		MW-40			
Sumple Date	Point (TOC)	833.	.29	87	77.81	8.	32.63		830.62		831.36			
Product Prod	ame	MW-37-090723	MW-37-030424	MW-106-091123	MW-106-030624	MW-38-090723	MW-38-030524	MW-39-090723	MW-39-030524	MW-39-051324	MW-40-090723	MW-40-030524	MW-40-051324	
Part Last Report Router No. No	ate	09/07/2023	03/04/2024	09/11/2023	03/06/2024	09/07/2023	03/05/2024	09/07/2023	03/05/2024	05/13/2024	09/07/2023	03/05/2024	05/13/2024	
Pass Read Section 1.5 Report Date 1/2-1/12-12-12-12-12-12-12-12-12-12-12-12-12-1	Report Date	9/25/2023	3/21/2024	9/29/2023	3/25/2024	9/25/2023	3/21/2024	9/25/2023	3/21/2024	5/15/2024	9/25/2023	3/21/2024	5/15/2024	
Para Real Para Pa	Report Revision Date	N/A	N/A	11/16/2023	5/1/2024	N/A	N/A							
Lis Data Reviewed and Accepted 17/19/0023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 12/19/2023 77/19/0024 13/19 1	iation Lab Report Date	9/29/2023	3/24/2024	10/5/2023	4/3/2024	9/29/2023	3/24/2024	9/29/2023	3/24/2024	N/A	9/29/2023	3/24/2024	N/A	
Seph to Native (If those)	ation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Temperature (Deg C)	Reviewed and Accepted	12/19/2023	7/10/2024	12/19/2023	7/15/2024	12/19/2023	7/10/2024	12/19/2023	7/10/2024	7/10/2024	12/19/2023	7/10/2024	7/10/2024	
Temperature (Deg C)	Water (ft btoc)	15.40	11.66	39.35	37.74	17.68	17.18	16.39	16.05	-	16.92	16.50	-	
Turbidity (NTV) 1.1 31.1 149 32.3 51.5 22.6 0.1 0.0 0.0 0.0 22.0 51.5 1.6	ture (Deg C)	15.70		20.32	16.21	22.03	13.05	20.19	13.62	18.25	19.94	14.69	19.07	
Turbidity (NTV) 1.1 31.1 149 32.3 51.5 22.6 0.1 0.0 0.0 0.0 22.0 51.5 1.6	vity (µS/cm)	1610	1480	202	401	1820	1600	1350	3360	3170	1590	3060	3040	
Part Field Sale	• • • •											0.0	0.0	
Dissolved Congen, Peled (mg/L)												7.28	7.17	
Oxygen Reduction Potential, Indel (my) -1.16 -1.14 173 2.76 -1.57 1-40 -48 -5.9 -7.3 1.28 Percus for, Field (mg/L) -												0.00	0.10	
Ferrous Inc., Field (Ing.L)												-136	-144	
Boron, Total (mg/L)												0.49	-	
Calcium, Total (mg/L)		1.8								_		2.9	-	
Chloride (mg/L)										_		440	-	
Fluoride (mg/L)										†		284	-	
Sulfate (mg/L) 280 60.5 4.0 5.3 568 188 cl.0 cl												1.6	-	
Price Pric	-											1260	_	
TOS (mg/L)	-6/ -/											7.2	-	
Arsenic (mg/L) Arsenic (mg/L)	1)		_									1850	-	
Sarium, Total (mg/L)												0.014	_	
Cobalt, Total (mg/L) < 0.0010 < 0.0010 0.023 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0011 < 0.0010 < 0.0011 < 0.0010 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0019 < 0.0011 < 0.0011 < 0.0011 < 0.0019 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 <td></td> <td></td> <td>0.034</td> <td></td>												0.034		
Lithium, Total (mg/L) 0.023 0.030 0.0267 0.019 0.052 0.052 0.037 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.059 0.051 0.085 0.065 0.18 0.15 0.059 0.069 0.18 0.15 0.059 0.069 0.18 0.15 0.059 0.069 0.18 0.15 0.059 0.069 0.18 0.15 0.059 0.069 0.18 0.15 0.059 0.069 0.18 0.15 0.059 0.069 0.18 0.010 0.010 0.011 0.010 0.010 0.011 0.010 0.011 0.010 0.011 0.010 0.014 0.010 0.014 0.019 0.052 0.053 0.034 0.050 0.044 0.044 0.049 0.059 0.059 0.059 0.058 0.059 0.059 0.059 0.059 0.051 0.066 0.068 0.0010 0.0010 0.0010 0.007 0.0015 0.003 0.044 0.059 0.059 0.058 0.059 0.058 0.050 0.058 0.050 0.051 0.011 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.011 0.010 0.011 0.0												< 0.0020	< 0.0010	
Molybdenum, Total (mg/L)										1		0.051	- 0.0010	
Fluoride (mg/L)												0.056	-	
Radium-226 & 228 Combined (pCi/L)												1.6	-	
Arsenic, Dissolved (mg/L) 100,0044 100,0042 100,0010 100,0017 100,017 100,017 100,017 100,017 100,010												0.907 ± 1.16 (2.16)	-	
Iron, Dissolved (mg/L) 3.6 3.5 < 0.050 < 0.050 1.5 1.6 0.62 0.45 - 6.7 Lithium, Dissolved (mg/L) 0.020 0.030 0.014 0.019 0.052 0.053 0.034 0.050 - 0.044 Manganese, Dissolved (mg/L) 1.3 1.4 < 0.0050 < 0.0050 0.40 0.39 2.4 2.5 - 2.7 Molybdenum, Dissolved (mg/L) 0.076 0.068 < 0.0010 < 0.0010 0.077 0.075 0.18 0.16 - 0.061 Eerrous Iron (mg/L) 0.020 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0		` '	, ,		· '	` '		` '	, ,		` ′	0.907 ± 1.16 (2.16)	-	
Lithium, Dissolved (mg/L) Manganese, Dissolved (mg/L) 1.3 1.4 <0.0050 0.014 0.019 0.052 0.053 0.034 0.050 - 0.034 0.050 - 0.044 Manganese, Dissolved (mg/L) 0.076 0.068 <0.0010 <0.0010 0.077 0.075 0.18 0.16 - 0.061 - 0.061 - Ferrous Iron (mg/L) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.												6.4		
Manganese, Dissolved (mg/L) 1.3 1.4 < 0.0050 < 0.0050 0.40 0.39 2.4 2.5 - 2.7 Molybdenum, Dissolved (mg/L) 0.076 0.068 < 0.0010 < 0.0010 0.077 0.075 0.18 0.16 - 0.061 Ferrous Iron (mg/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 Iron, Total (mg/L) 3.9 5.7 36.6 1.5 2.7 1.8 0.61 0.50 - 8.2 Magnesium, Total (mg/L) 22.8 23.4 9.8 5.9 67.3 59.3 45.5 51.5 - 41.6 Manganese, Dissolved (mg/L) 1.3 1.4 1.2 0.053 0.40 0.20 < 0.20 < 0.20 < 0.20 Iron, Total (mg/L) 1.3 1.4 1.2 0.053 0.40 0.41 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.7 2.6												0.055	-	
Molybdenum, Dissolved (mg/L) 0.076 0.068 < 0.0010 < 0.0010 0.077 0.075 0.18 0.16 - 0.061 Ferrous Iron (mg/L) < 0.20												2.7	-	
Ferrous Iron (mg/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20												0.057	-	
Iron, Total (mg/L) 3.9 5.7 36.6 1.5 2.7 1.8 0.61 0.50 - 8.2 Magnesium, Total (mg/L) 22.8 23.4 9.8 5.9 67.3 59.3 45.5 51.5 - 41.6 Manganese, Total (mg/L) 1.3 1.4 1.2 0.053 0.40 0.41 2.4 2.4 - 2.7 Potassium, Total (mg/L) 8.8 9.2 4.7 2.4 22.6 21.9 25.2 24.6 - 24.5 Sodium, Total (mg/L) 79.9 80.4 40.4 38.4 161 153 317 284 - 254 Alkalinity, Bicarbonate (mg/L) 518 522 222 218 383 388 159 152 - 208 Alkalinity, Carbonate (mg/L) <20.0													-	
Magnesium, Total (mg/L) 22.8 23.4 9.8 5.9 67.3 59.3 45.5 51.5 - 41.6 Manganese, Total (mg/L) 1.3 1.4 1.2 0.053 0.40 0.41 2.4 2.4 - 2.7 Potassium, Total (mg/L) 8.8 9.2 4.7 2.4 22.6 21.9 25.2 24.6 - 24.5 Sodium, Total (mg/L) 79.9 80.4 40.4 38.4 161 153 317 284 - 254 Alkalinity, Bicarbonate (mg/L) 518 522 222 218 383 388 159 152 - 208 Alkalinity, Carbonate (mg/L) <20.0												< 0.20	-	
Manganese, Total (mg/L) 1.3 1.4 1.2 0.053 0.40 0.41 2.4 2.4 - 2.7 Potassium, Total (mg/L) 8.8 9.2 4.7 2.4 22.6 21.9 25.2 24.6 - 24.5 Sodium, Total (mg/L) 79.9 80.4 40.4 38.4 161 153 317 284 - 254 Alkalinity, Bicarbonate (mg/L) 518 522 222 218 383 388 159 152 - 208 Alkalinity, Carbonate (mg/L) <20.0												6.4	-	
Potassium, Total (mg/L) 8.8 9.2 4.7 2.4 22.6 21.9 25.2 24.6 - 24.5 Sodium, Total (mg/L) 79.9 80.4 40.4 38.4 161 153 317 284 - 254 Alkalinity, Bicarbonate (mg/L) 518 522 222 218 383 388 159 152 - 208 Alkalinity, Carbonate (mg/L) <20.0			-			+						39.2	-	
Sodium, Total (mg/L) 79.9 80.4 40.4 38.4 161 153 317 284 - 254 Alkalinity, Bicarbonate (mg/L) 518 522 222 218 383 388 159 152 - 208 Alkalinity, Carbonate (mg/L) < 20.0												2.5	-	
Alkalinity, Bicarbonate (mg/L) 518 522 222 218 383 388 159 152 - 208 Alkalinity, Carbonate (mg/L) < 20.0												24.8	-	
Alkalinity, Carbonate (mg/L) < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 <									_	-		239	-	
										-		201	-	
												< 20.0	-	
Dissolved Organic Carbon (DOC) (mg/L) 7.8 4.1 < 1.0 < 1.0 6.2 1.9 1.6 1.7 - 1.5												1.4	-	
Sulfide (mg/L) < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050												< 0.050	-	
Total Organic Carbon (TOC) (mg/L) 16.2 3.5 < 1.0 < 1.0 9.9 1.5 4.2 1.0 - 4.6										-		< 1.0	-	
Hardness, Total (mg/L) 684 703 40.4 24.4 774 709 1540 1390 - 1330 Notes:	, Total (mg/L)	684	703	40.4	24.4	774	709	1540	1390	-	1330	1280	-	

Notes:

Bold value: Detection above laboratory reporting limit or minimum

detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC. μ S/cm = micro Siemens per centimeter

psycm = micro siemens per centur.

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER **INACTIVE ASH PONDS** LAWRENCE, KANSAS

Location	Downgradient														
Location		MW-K			MW-L			MW-101							
Measure Point (TOC)		827.49			832.31				82	28.65					
Sample Name	MW-K-090723	MW-K-030524	LEC IAP-DUP-030524	MW-L-090723	LEC IAP-DUP-090723	MW-L-030524	MW-L-051324	MW-101-090823	LEC-IAPPW-DUP2-090823	MW-101-030524	LEC-IAP PW-DUP2-030524				
Sample Date	09/07/2023	03/05/2024	03/05/2024	09/07/2023	09/07/2023	03/05/2024	05/13/2024	09/08/2023	09/08/2023	03/05/2024	03/05/2024				
Final Lab Report Date	9/25/2023	3/21/2024	3/21/2024	9/25/2023	9/25/2023	3/21/2024	5/15/2024	9/29/2023	9/29/2023	3/25/2024	3/25/2024				
Final Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11/16/2023	11/16/2023	5/1/2024	5/1/2024				
Final Radiation Lab Report Date	9/29/2023	3/24/2024	3/24/2024	9/29/2023	9/29/2023	3/24/2024	N/A	10/5/2023	10/5/2023	4/3/2024	4/3/2024				
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Lab Data Reviewed and Accepted	12/19/2023	7/10/2024	7/10/2024	12/19/2023	12/19/2023	7/10/2024	7/10/2024	12/19/2023	12/19/2023	7/15/2024	7/15/2024				
Depth to Water (ft btoc)	12.74	12.48	-	17.90	-	17.76	-	14.08	-	13.83	-				
Temperature (Deg C)	18.13	14.22	-	16.82	-	14.47	17.45	26.82	-	13.36	-				
Conductivity (µS/cm)	1620	1770	-	4380	-	4290	4000	522	-	777	-				
Turbidity (NTU)	24.4	48.5	-	12.1	-	2.0	0.0	48.3	-	12.6	-				
pH , Field (su)	7.70	7.57	-	7.29	-	7.36	7.22	7.64	-	7.86	-				
Dissolved Oxygen, Field (mg/L)	0.30	0.48	-	0.80	-	0.00	0.00	0.00	-	2.55	-				
Oxygen Reduction Potential, Field (mv)	-182	-171	-	-165	-	-135	-157	82	-	-49	-				
Ferrous Iron, Field (mg/L)	1.33	0.49	-	2.84	-	0.38	-	2.49	-	0.17	-				
Boron, Total (mg/L)	1.9	1.8	1.8	2.4	2.4	2.4	-	0.23	0.22	0.13	0.13				
Calcium, Total (mg/L)	207	192	199	485	481	429	-	119	111	115	111				
Chloride (mg/L)	108	117	147	762	775	452	-	47.3	49.3	37.6	38.6				
Fluoride (mg/L)	2.6	2.7	2.7	2.5	2.5	2.6	_	0.85	0.74	0.81	0.78				
Sulfate (mg/L)	444	157	173	1860	2430	1490	_	35.7	36.5	31.6	33.2				
pH (su)	7.7	7.7	7.7	7.2	7.2	7.3	_	7.6	7.5	7.3	7.3				
TDS (mg/L)	1400	1250	1240	4340	6720	1770	_	484	178	466	524				
Arsenic (mg/L)	0.083	0.073	0.071	0.027	0.027	0.029	_	0.0042	0.0043	0.0047	0.0045				
Barium, Total (mg/L)	0.048	0.046	0.047	0.035	0.035	0.029	_	0.20	0.22	0.19	0.18				
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0020	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010				
Lithium, Total (mg/L)	0.048	0.050	0.050	0.090	0.086	0.089	_	0.022	0.024	0.025	0.022				
Molybdenum, Total (mg/L)	0.021	0.022	0.020	0.047	0.048	0.048	_	0.024	0.023	0.023	0.022				
Fluoride (mg/L)	2.6	2.7	2.7	2.5	2.5	2.6	_	0.85	0.74	0.81	0.78				
Radium-226 & 228 Combined (pCi/L)	1.23 ± 0.835 (1.59)	0.644 ± 1.04 (2.06)	0.651 ± 0.876 (1.71)	1.27 ± 0.955 (1.63)	0.716 ± 0.822 (1.57)	1.13 ± 1.05 (1.92)	_	0.443 ± 0.866 (1.70)	1.32 ± 1.05 (1.87)	0.994 ± 0.968 (1.80)	1.34 ± 1.04 (1.80)				
Arsenic, Dissolved (mg/L)	0.051	0.050	0.052	0.024	0.026	0.027	_	0.0031	0.0030	0.0043	0.0045				
Iron, Dissolved (mg/L)	1.8	1.8	1.9	6.2	6.1	5.5	_	2.1	2.1	2.6	2.5				
Lithium, Dissolved (mg/L)	0.047	0.051	0.048	0.089	0.087	0.095	_	0.023	0.020	0.024	0.022				
Manganese, Dissolved (mg/L)	1.1	1.1	1.1	3.4	3.5	3.2	_	0.43	0.43	0.48	0.47				
Molybdenum, Dissolved (mg/L)	0.023	0.020	0.020	0.046	0.048	0.046	_	0.022	0.023	0.023	0.022				
Ferrous Iron (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	_	< 0.20	0.32	0.21	< 0.20				
Iron, Total (mg/L)	2.9	4.1	3.7	7.3	7.3	5.8	-	3.8	4.3	3.0	2.8				
Magnesium, Total (mg/L)	64.9	63.1	62.2	154	153	138	-	24.8	21.7	21.3	20.4				
Manganese, Total (mg/L)	1.0	1.1	1.1	3.6	3.6	3.0	-	0.48	0.52	0.50	0.47				
Potassium, Total (mg/L)	27.8	28.7	27.6	33.3	33.0	33.5	-	7.4	7.2	6.9	6.6				
Sodium, Total (mg/L)	108	112	107	459	455	397		17.3	17.2	14.4	13.8				
Alkalinity, Bicarbonate (mg/L)	453	445	451	277	277	265	 	338	334	336	334				
Alkalinity, Carbonate (mg/L)	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	-	< 20.0	< 20.0	< 20.0	< 20.0				
Dissolved Organic Carbon (DOC) (mg/L)	2.7	2.8	3.1	2.0	2.2	2.2		1.8	16.0	2.3	2.3				
	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	0.051	< 0.050	< 0.050				
Sulfide (mg/L)	10.2	2.4	2.3	7.3	6.4	1.3	-	2.4	33.9	3.1	1.5				
Total Organic Carbon (TOC) (mg/L) Hardness, Total (mg/L)	763	747	733	1840	1820	1.3	-	102	89.4	87.7	84.1				
Notes:	/03	/4/	/33	1040	1020	10/0		102	03.4	07.7	04.1				

Notes:

Bold value: Detection above laboratory reporting limit or minimum

detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC. μ S/cm = micro Siemens per centimeter

psycm = micro siemens per centur.

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER **INACTIVE ASH PONDS** LAWRENCE, KANSAS

							Downgradient						
Location	M	W-102	MW	-103	MV	V-104		MV	V-107		MW-108		
Measure Point (TOC)	8	329.55	829	0.15	82	4.81		83	1.10		83	0.08	
Sample Name	MW-102-090823	MW-102-030524	MW-103-091123	MW-103-030624	MW-104-091123	MW-104-030624	MW-107-090723	107-090723 LEC-IAPPW-DUP1-090723 MW-107-030524 LEC-IAP PW-DUP1-030524				MW-108-030524	
Sample Date	09/08/2023	03/05/2024	09/11/2023	03/06/2024	09/11/2023	03/06/2024	09/07/2023	09/07/2023	03/05/2024	03/05/2024	09/07/2023	03/05/2024	
Final Lab Report Date	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	9/29/2023	3/25/2024	3/25/2024	9/29/2023	3/25/2024	
Final Lab Report Revision Date	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	11/16/2023	5/1/2024	5/1/2024	11/16/2023	5/1/2024	
Final Radiation Lab Report Date	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	10/5/2023	4/3/2024	4/3/2024	10/5/2023	4/3/2024	
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Lab Data Reviewed and Accepted	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	12/19/2023	7/15/2024	7/15/2024	12/19/2023	7/15/2024	
Depth to Water (ft btoc)	15.47	15.31	15.14	15.11	10.76	10.69	16.11	-	15.88	-	14.63	14.33	
Temperature (Deg C)	17.72	13.10	16.63	12.57	19.43	14.47	21.67	-	8.01	-	23.32	15.44	
Conductivity (µS/cm)	1060	888	2490	3240	1300	2430	912	-	955	-	771	814	
Turbidity (NTU)	17.2	7.5	111	87.1	9.7	516	12.1	-	21.8	=	0.0	8.4	
pH , Field (su)	6.78	7.75	7.18	7.53	7.67	7.32	6.93	-	7.05	-	7.33	7.69	
Dissolved Oxygen, Field (mg/L)	0.60	3.72	0.00	0.00	0.47	0.00	0.00	-	1.21	-	0.34	3.61	
Oxygen Reduction Potential, Field (mv)	-98	-58	-49	-159	136	-138	-93	-	187	-	-165	20	
Ferrous Iron, Field (mg/L)	1.55	0.26	2.39	0.83	1.30	0.75	1.04	-	0.23	-	1.82	0.00	
Boron, Total (mg/L)	0.82	0.42	3.8	3.8	1.9	1.6	0.17	0.16	0.13	0.13	0.18	0.16	
Calcium, Total (mg/L)	132	120	359	433	345	351	124	116	121	118	114	106	
Chloride (mg/L)	24.7	14.9	227	369	209	257	25.9	24.0	19.6	18.6	58.6	134	
Fluoride (mg/L)	3.1	1.8	2.1	2.7	< 0.20	0.53	1.5	1.4	1.2	1.3	1.3	1.3	
Sulfate (mg/L)	66.9	60.3	1120	1750	936	633	45.5	43.2	43.8	41.6	26.4	19.5	
pH (su)	7.2	7.7	7.3	7.5	7.6	7.4	7.0	7.0	7.1	7.2	7.2	7.5	
TDS (mg/L)	595	556	1850	2490	2000	1810	497	530	497	519	506	459	
Arsenic (mg/L)	0.0084	0.010	0.010	0.012	0.0035	0.0067	0.013	0.013	0.0086	0.0084	0.0061	0.0023	
Barium, Total (mg/L)	0.13	0.12	0.050	0.052	0.050	0.085	0.15	0.16	0.14	0.14	0.23	0.20	
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	
Lithium, Total (mg/L)	0.038	0.031	0.042	0.054	0.060	0.071	0.025	0.029	0.026	0.025	0.016	0.020	
Molybdenum, Total (mg/L)	0.055	0.036	0.18	0.15	0.047	0.035	0.029	0.028	0.024	0.023	0.029	0.025	
Fluoride (mg/L)	3.1	1.8	2.1	2.7	< 0.20	0.53	1.5	1.4	1.2	1.3	1.3	1.3	
Radium-226 & 228 Combined (pCi/L)	0.821 ± 0.910 (1.66)	1.53 ± 0.906 (1.47)	0.443 ± 0.816 (1.72)	1.08 ± 0.908 (1.62)	1.31 ± 1.11 (1.86)	1.50 ± 1.10 (2.02)	1.07 ± 0.954 (1.69)	0.809 ± 0.703 (1.15)	0.947 ± 1.14 (2.11)	1.78 ± 1.27 (2.05)	0.876 ± 1.08 (1.98)	0.994 ± 1.29 (2.38)	
Arsenic, Dissolved (mg/L)	0.0077	0.010	0.0044	0.0082	0.0038	0.0037	0.0090	0.0087	0.0043	0.0043	0.0058	0.0011	
Iron, Dissolved (mg/L)	1.9	0.93	3.2	5.5	4.4	5.5	1.6	1.6	0.33	0.33	2,7	< 0.050	
Lithium, Dissolved (mg/L)	0.040	0.028	0.046	0.064	0.065	0.070	0.026	0.025	0.027	0.023	0.020	0.020	
Manganese, Dissolved (mg/L)	0.48	0.10	1.2	2.2	1.5	1.8	0.48	0.50	0.30	0.29	0.52	< 0.0050	
Molybdenum, Dissolved (mg/L)	0.053	0.037	0.16	0.15	0.044	0.035	0.026	0.025	0.022	0.022	0.029	0.025	
Ferrous Iron (mg/L)	< 0.20	< 0.20	< 0.2	0.34	0.21	0.70	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	
Iron, Total (mg/L)	2.2	0.86	7.7	7.0	4.6	8.5	2.9	2.7	1.6	1.6	3.0	0.65	
Magnesium, Total (mg/L)	39.5	30.4	58.5	81.6	34.9	32.5	37.4	32.0	30.5	29.6	20.8	18.8	
Manganese, Total (mg/L)	0.50	0.083	1.9	2.2	1.5	1.8	0.53	0.55	0.39	0.39	0.55	0.042	
Potassium, Total (mg/L)	9.6	9.2	24.6	26.8	41.5	43.6	8.8	8.5	8.2	8.2	8.3	7.7	
Sodium, Total (mg/L)	22.1	12.6	228	275	188	166	7.5	6.8	6.4	5.8	25.3	25.2	
Alkalinity, Bicarbonate (mg/L)	435	397	294	283	401	404	389	392	391	396	319	313	
Alkalinity, Carbonate (mg/L)	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	
Dissolved Organic Carbon (DOC) (mg/L)	1.6	1.7	3.1	1.7	3.4	1.6	1.3	1.7	1.3	2.0	4.4	2.1	
Sulfide (mg/L)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Total Organic Carbon (TOC) (mg/L)	1.4	2.2	2.3	3.0	2.2	4.3	1.2	57.1	2.2	1.3	2.2	7.8	
Hardness, Total (mg/L)	163	125	241	336	144	134	154	132	126	122	85.7	77.5	
Notes:	103	123	271	330	177	137	137	132	120	122	05.7	,,,,	

Bold value: Detection above laboratory reporting limit or minimum

detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC. μ S/cm = micro Siemens per centimeter

psycm = micro siemens per centur.

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER **INACTIVE ASH PONDS** LAWRENCE, KANSAS

Location	Downgradient													
Location	My	N-109	MW-110		MW	/-112	MW	/-113	MW	'-A	MW-B			
Measure Point (TOC)	87	29.78	830	.54	833	3.16	833	1.32	830.	52	8	30.11		
ample Name	MW-109-090823	MW-109-030524	MW-110-090723	MW-110-030524	MW-112-090723	MW-112-030524	MW-113-090723	MW-113-030524	MW-A-090823	MW-A-030624	MW-B-090823	MW-B-030524		
imple Date	09/08/2023	03/05/2024	09/07/2023	03/05/2024	09/07/2023	03/05/2024	09/07/2023	03/05/2024	09/08/2023	03/06/2024	09/08/2023	03/05/2024		
nal Lab Report Date	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	3/25/2024	10/19/2023	3/25/2024	9/29/2023	3/25/2024		
inal Lab Report Revision Date	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	5/1/2024	N/A	5/1/2024	11/16/2023	5/1/2024		
inal Radiation Lab Report Date	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	4/3/2024	11/10/2023	4/3/2024	10/5/2023	4/3/2024		
inal Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
ab Data Reviewed and Accepted	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024		
Depth to Water (ft btoc)	15.16	15.01	16.18	16.12	18.69	18.58	16.92	16.76	15.56	15.00	15.11	14.85		
Temperature (Deg C)	17.35	14.18	19.61	14.51	26.57	8.90	22.14	10.70	14.13	17.31	16.43	16.11		
Conductivity (μS/cm)	4450	4550	4550	4750	803	919	1400	1380	1080	986	1050	877		
urbidity (NTU)	49.2	33.5	83.0	52.5	14.3	43.1	40.8	10.2	39.0	69.0	1.1	24.2		
OH , Field (su)	7.25	6.84	7.25	6.82	7.11	7.05	7.42	7.24	6.81	7.24	6.57	7.53		
Dissolved Oxygen, Field (mg/L)	0.00	2.02	0.00	0.57	0.00	0.75	4.45	1.58	0.00	0.00	0.00	1.90		
Oxygen Reduction Potential, Field (mv)	-148	36	-160	-109	13	-148	-178	-164	-112	-60	130	190		
Ferrous Iron, Field (mg/L)	2.44	0.00	3.15	2.24	0.20	>3.00	2.16	2.39	3.20	0.66	0.05	0.25		
Boron, Total (mg/L)	4.7	4.4	4.2	3.9	< 0.10	< 0.10	3.8	3.3	0.40	0.64	< 0.10	< 0.10		
Calcium, Total (mg/L)	518	473	507	487	122	116	127	121	159	140	159	148		
Chloride (mg/L)	533	475	597	457	49.5	40.6	73.9	135	43.7	36.1	29.4	20.5		
luoride (mg/L)	2.6	3.2	3.1	4.5	0.23	0.24	5.7	5.9	0.26	0.22	0.58	0.47		
Sulfate (mg/L)	< 1.0	1490	< 1.0	1620	39.3	25.4	296	108	127	88.2	51.3	28.1		
oH (su)	7.1	7.4	7.2	7.2	7.0	7.2	7.5	7.6	7.0	7.1	7.1	7.3		
TDS (mg/L)	3790	3030	3690	3090	774	475	993	927	667	597	594	565		
Arsenic (mg/L)	0.012	0.0078	0.0040	< 0.0040	0.0019	0.0021	0.0031	0.0026	0.0022	0.0056	0.0050	0.0048		
Barium, Total (mg/L)	0.034	0.028	0.035	0.034	0.24	0.24	0.060	0.048	0.080	0.12	0.19	0.22		
Cobalt, Total (mg/L)	< 0.0010	< 0.0030	< 0.0010	< 0.0040	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0051	0.0082		
.ithium, Total (mg/L)	0.062	0.069	0.084	0.088	0.015	0.016	0.053	0.053	0.014	0.017	0.020	0.019		
Molybdenum, Total (mg/L)	0.11	0.097	0.11	0.10	0.0091	0.0083	0.17	0.16	0.019	0.018	0.014	0.012		
Fluoride (mg/L)	2.6	3.2	3.1	4.5	0.23	0.24	5.7	5.9	0.26	0.22	0.58	0.47		
Radium-226 & 228 Combined (pCi/L)	0.341 ± 0.732 (1.58)	0.849 ± 0.788 (1.66)	0.962 ± 0.78 (1.43)	1.03 ± 0.815 (1.58)	0.137 ± 0.567 (1.11)	1.06 ± 0.820 (1.39)	0.442 ± 0.693 (1.49)	0.493 ± 0.868 (1.70)	0.898 ± 0.921 (1.69)	1.03 ± 0.751 (1.27)	1.61 ± 1.05 (1.70)	4.35 ± 1.44 (1.45)		
Arsenic, Dissolved (mg/L)	0.0068	0.0055	0.0033	< 0.0040	<0.0016	0.0020	0.0026	0.0025	0.0022	< 0.0010	0.0045	0.0042		
Iron, Dissolved (mg/L)	4.6	3.4	6.9	6.5	6.9	7.4	2.4	2.5	4.7	1.3	< 0.050	< 0.050		
Lithium, Dissolved (mg/L)	0.066	0.073	0.089	0.090	0.016	0.017	0.055	0.054	0.013	0.013	0.022	0.020		
Manganese, Dissolved (mg/L)	2.9	2.3	1.6	1.9	0.96	1.0	0.41	0.43	0.94	0.70	0.45	0.18		
Molybdenum, Dissolved (mg/L)	0.11	0.095	0.10	0.097	0.0089	0.0083	0.17	0.15	0.019	0.016	0.013	0.010		
Ferrous Iron (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.37	0.27	< 0.20	0.20	0.28	< 0.20	< 0.20		
Iron, Total (mg/L)	7.5	4.9	9.1	8.4	7.8	8.3	3.7	2.6	5.8	9.8	0.078	0.14		
Magnesium, Total (mg/L)	133	116	157	147	14.9	14.4	48.6	45.9	26.1	20.5	17.7	14.5		
Manganese, Total (mg/L)	3.0	2.6	1.7	2.0	1.0	1.1	0.47	0.44	0.98	0.99	1.0	1.2		
Potassium, Total (mg/L)	28.2	25.2	32.9	32.4	5.9	5.7	13.7	12.7	5.7	5.5	7.4	6.3		
Sodium, Total (mg/L)	358	312	378	341	14.7	14.1	103	92.2	35.9	37.2	6.5	6.1		
Alkalinity, Bicarbonate (mg/L)	176	158	232	232	318	317	348	338	396	405	398	389		
Alkalinity, Carbonate (mg/L)	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0		
Dissolved Organic Carbon (DOC) (mg/L)	2.6	1.5	2.7	1.9	7.3	3.3	4.5	1.9	3.0	2.7	1.4	1.4		
Sulfide (mg/L)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		
Total Organic Carbon (TOC) (mg/L)	1.7	1.6	2.5	3.0	2.1	2.2	2.2	6.0	1.5	1.6	1.2	1.7		
5.5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	546	478	648	607	61.5	59.2	200	189	107	84.2		59.8		

Bold value: Detection above laboratory reporting limit or minimum

detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC. μ S/cm = micro Siemens per centimeter

psycm = micro siemens per centur.

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER **INACTIVE ASH PONDS** LAWRENCE, KANSAS

	Downgradient												
Location	N	/IW-C	ı	/IW-D	MW-G	MV	V-M	M\	V-N	MV	V-O	MW-P	
Measure Point (TOC)	8	27.63	8	329.43	843.21	82	8.93	826	5.81	830).32	829	1.63
Sample Name	MW-C-090823	MW-C-030624	MW-D-090823	MW-D-030624	MW-G-091123	MW-M-091123	MW-M-030624	MW-N-090823	MW-N-030524	MW-O-090823	MW-O-030524	MW-P-091123	MW-P-030624
Sample Date	09/08/2023	03/06/2024	09/08/2023	03/06/2024	09/11/2023	09/11/2023	03/06/2024	09/08/2023	03/05/2024	09/08/2023	03/05/2024	09/11/2023	03/06/2024
Final Lab Report Date	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	3/25/2024	9/29/2023	3/25/2024
Final Lab Report Revision Date	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	5/1/2024	11/16/2023	5/1/2024
Final Radiation Lab Report Date	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	4/3/2024	10/5/2023	4/3/2024
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lab Data Reviewed and Accepted	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024	12/19/2023	7/15/2024
Depth to Water (ft btoc)	13.04	12.62	14.43	14.19	27.22	14.72	14.52	12.21	11.92	15.98	15.86	15.72	15.55
Temperature (Deg C)	24.61	14.82	28.05	15.50	18.25	19.00	16.17	20.53	13.98	18.62	14.20	16.04	12.81
Conductivity (µS/cm)	896	944	544	1920	1530	1610	1410	695	953	5100	4630	1650	1380
Turbidity (NTU)	402	69.7	95.2	1000	20	1000	128	700	450	10.9	28.6	23.9	46.6
pH , Field (su)	7.01	7.24	7.80	6.92	6.91	7.50	7.08	7.40	7.75	7.15	7.46	6.80	7.33
Dissolved Oxygen, Field (mg/L)	0.00	0.44	0.00	0.00	0.00	0.02	1.05	0.15	0.00	2.56	0.00	0.00	0.15
Oxygen Reduction Potential, Field (mv)	155	214	-314	-102	-119	121	61	-146	-29	-159	-162	99	192
Ferrous Iron, Field (mg/L)	0.22	0.90	3.19	1.08	3.26	0.49	0.36	1.11	1.25	2.77	1.71	0.00	0.07
Boron, Total (mg/L)	0.20	0.20	0.44	0.42	1.6	2.7	0.85	0.80	0.69	2.7	2.7	1.0	0.95
Calcium, Total (mg/L)	138	146	373	375	206	315	203	114	102	524	524	225	207
Chloride (mg/L)	14.9	15.4	76.4	58.0	24.5	199	125	33.6	38.1	705	718	62.9	102
Fluoride (mg/L)	0.37	0.30	< 0.20	< 0.20	< 0.20	3.0	0.59	3.3	3.0	2.9	3.8	1.3	1.0
Sulfate (mg/L)	89.2	109	654	662	473	963	402	62.1	67.9	1850	1910	342	371
pH (su)	7.1	7.2	7.3	6.9	7.1	7.3	7.1	7.6	7.6	7.1	7.6	7.0	7.2
TDS (mg/L)	568	572	1670	1610	1050	2050	1080	634	549	4400	3550	1140	1030
Arsenic (mg/L)	0.0042	0.0035	0.0022	0.030	0.033	0.014	0.0055	0.031	0.045	0.014	0.014	0.0043	0.0067
Barium, Total (mg/L)	0.094	0.10	0.18	0.86	0.042	0.66	0.23	0.23	0.21	0.043	0.043	0.082	0.098
Cobalt, Total (mg/L)	0.0010	< 0.0010	< 0.0010	0.0029	0.0020	0.020	0.0022	0.0021	< 0.0010	< 0.0010	< 0.0030	0.0034	0.0044
Lithium, Total (mg/L)	0.015	0.020	< 0.010	0.019	< 0.010	0.050	0.034	0.049	0.050	0.091	0.11	0.030	0.034
Molybdenum, Total (mg/L)	0.015	0.012	< 0.0010	0.0024	0.0047	0.063	0.015	0.033	0.028	0.059	0.057	0.035	0.032
Fluoride (mg/L)	0.37	0.30	< 0.20	< 0.20	< 0.20	3.0	0.59	3.3	3.0	2.9	3.8	1.3	1.0
Radium-226 & 228 Combined (pCi/L)	0.527 ± 0.86 (1.71)	0.647 ± 0.896 (1.78)	1.77 ± 1.20 (1.83)	2.44 ± 1.33 (1.97)	0.620 ± 0.675 (1.30)	0.281 ± 0.885 (1.94)	0.607 ± 0.768 (1.58)	1.86 ± 1.13 (1.79)	2.57 ± 1.11 (1.50)	1.07 ± 0.778 (1.33)	1.33 ± 1.09 (1.83)	1.81 ± 0.979 (1.48)	2.68 ± 1.40 (2.02)
Arsenic, Dissolved (mg/L)	0.0037	0.0029	0.0027	0.0017	0.032	0.0058	0.0043	0.011	0.0057	0.012	0.012	0.0016	0.0017
Iron, Dissolved (mg/L)	< 0.050	< 0.050	13.0	15.2	6.3	< 0.050	< 0.050	1.3	0.38	8.9	9.3	0.13	0.053
Lithium, Dissolved (mg/L)	0.017	0.020	0.010	< 0.010	< 0.010	0.046	0.025	0.044	0.042	0.093	0.091	0.031	0.030
Manganese, Dissolved (mg/L)	0.072	0.015	4.8	4.9	0.82	1.7	0.16	0.34	0.33	2.0	2.4	2.4	1.2
Molybdenum, Dissolved (mg/L)	0.015	0.012	< 0.0010	0.0016	0.0048	0.031	0.011	0.032	0.029	0.060	0.049	0.030	0.027
Ferrous Iron (mg/L)	< 0.20	< 0.20	0.23	2.7	< 0.20	< 0.20	< 0.20	< 0.20	0.50	< 0.20	0.38	< 0.20	< 0.20
Iron, Total (mg/L)	0.83	0.53	12.3	67.0	6.3	10.7	1.8	12.7	10.9	9.4	9.9	1.8	2.8
Magnesium, Total (mg/L)	14.2	16.7	60.4	59.9	29.5	83.8	33.1	46.5	40.7	168	157	44.1	37.4
Manganese, Total (mg/L)	0.15	0.11	5.2	7.2	0.84	13.3	1.7	0.42	0.39	2.1	2.5	4.2	3.9
Potassium, Total (mg/L)	6.2	5.6	9.5	10.6	7.1	17.7	9.2	18.2	15.7	31.8	30.9	15.2	12.9
Sodium, Total (mg/L)	17.7	22.6	33.8	32.7	77.5	204	62.4	29.8	26.9	451	390	52.3	49.4
Alkalinity, Bicarbonate (mg/L)	320	396	439	513	330	377	383	436	404	252	276	421	409
Alkalinity, Carbonate (mg/L)	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0	< 20.0
Dissolved Organic Carbon (DOC) (mg/L)	1.1	1.2	4.4	8.1	3.1	2.4	3.3	2.2	7.5	2.4	2.3	2.4	2.2
Sulfide (mg/L)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.24	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total Organic Carbon (TOC) (mg/L)	1.3	5.7	4.1	13.1	2.5	2.3	2.1	1.9	2.3	2.6	2.0	2.1	2.5
Hardness, Total (mg/L)	58.3	68.7	249	246	122	345	136	191	167	692	647	182	154
Notes:		•	·		•	•			•	•			

Notes:

Bold value: Detection above laboratory reporting limit or minimum

detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC. μ S/cm = micro Siemens per centimeter

psycm = micro siernens per centur.

Deg C = degrees Celsius
ft btoc = feet below top of casing
mg/L = milligrams per liter
N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

TABLE IV

ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS MARCH 2023 SAMPLING EVENT

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER

LAWRENCE, KANSAS

Well Number	Background Value ^{1,2}	GWPS
	CCR Appendix-IV Arsenic, Total (mg/L)	
MW-37 (upgradient)	0.00881	NA
MW-38		0.010
MW-39		0.010
MW-40		0.010
MW-K		0.010
MW-L		0.010
	CCR Appendix-IV Barium, Total (mg/L)	
MW-37 (upgradient)	0.0804	NA
MW-38		2
MW-39		2
MW-40		2
MW-K		2
MW-L		2
	CCR Appendix-IV Cobalt, Total (mg/L)	
MW-37 (upgradient)	0.001 ³	NA
MW-38		0.006
MW-39		0.006
MW-40		0.006
MW-K		0.006
MW-L	200 0 11 11 11 11 11 11 11	0.006
	CCR Appendix-IV Fluoride, Total (mg/L)	
MW-37 (upgradient)	0.449	NA
MW-38	5.500	5.5
MW-39		4.0
MW-40		4.0
MW-K MW-L		4.0 4.0
IVI VV-L	CCR Appendix-IV Lead, Total (mg/L)	4.0
MW-37 (upgradient)	0.010	NA
MW-38	0.010	0.015
MW-39		0.015
MW-40		0.015
MW-K		0.015
MW-L		0.015
	CCR Appendix-IV Lithium, Total (mg/L)	
MW-37 (upgradient)	0.0269	NA
MW-38		0.040
MW-39		0.040
MW-40		0.040
MW-K		0.040
MW-L		0.040
	CCR Appendix-IV Molybdenum, Total (mg	/L)
MW-37 (upgradient)	0.152	NA
MW-38		0.152
MW-39		0.152
MW-40		0.152
MW-K		0.152
MW-L		0.152
	CCR Appendix-IV: Radium-226 & 228 (pCi/	
MW-37 (upgradient)	1.91	NA
MW-38		5
MW-39		5
MW-40 MW-K		5 5

Notes:

 $CCR = Coal\ Combustion\ Residuals$

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

 $NA = Not \ Applicable$

 $^{^1 \ \}textit{Interwell background data collected from 03/07/2018 through 03/15/2022, unless otherwise noted}.$

 $^{^{\}rm 2}$ Intrawell background data collected from 03/07/2018 through 03/15/2022.

³ Interwell background data collected from 03/07/2018 through 12/16/2022.

TABLE V

ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS SEPTEMBER 2023 SAMPLING EVENT

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

Well Number	Background Value ^{1,2}	GWPS
	CCR Appendix-IV Arsenic, Total (mg/L)	
MW-37 (upgradient)	0.00890	NA
MW-38		0.010
MW-39		0.010
MW-40		0.010
MW-K		0.010
MW-L		0.010
	CCR Appendix-IV Barium, Total (mg/L)	
MW-37 (upgradient)	0.0852	NA
MW-38		2
MW-39		2
MW-40		2
MW-K		2
MW-L		2
	CCR Appendix-IV Cobalt, Total (mg/L)	
MW-37 (upgradient)	0.001 ³	NA
MW-38		0.006
MW-39		0.006
MW-40		0.006
MW-K		0.006
MW-L		0.006
	CCR Appendix-IV Fluoride, Total (mg/L)	
MW-37 (upgradient)	0.440	NA
MW-38	5.500	5.5
MW-39		4.0
MW-40		4.0
MW-K		4.0
MW-L		4.0
	CCR Appendix-IV Lithium, Total (mg/L)	
MW-37 (upgradient)	0.0274	NA
MW-38		0.040
MW-39		0.040
MW-40		0.040
MW-K		0.040
MW-L		0.040
	CCR Appendix-IV Molybdenum, Total (mg	/L)
MW-37 (upgradient)	0.153	NA
MW-38		0.152
MW-39		0.152
MW-40		0.152
MW-K		0.152
MW-L		0.152
	CCR Appendix-IV: Radium-226 & 228 (pCi	/L)
MW-37 (upgradient)	1.91 ³	NA
MW-38		5
MW-39		5
MW-40		5
MW-K		5
MW-L		5

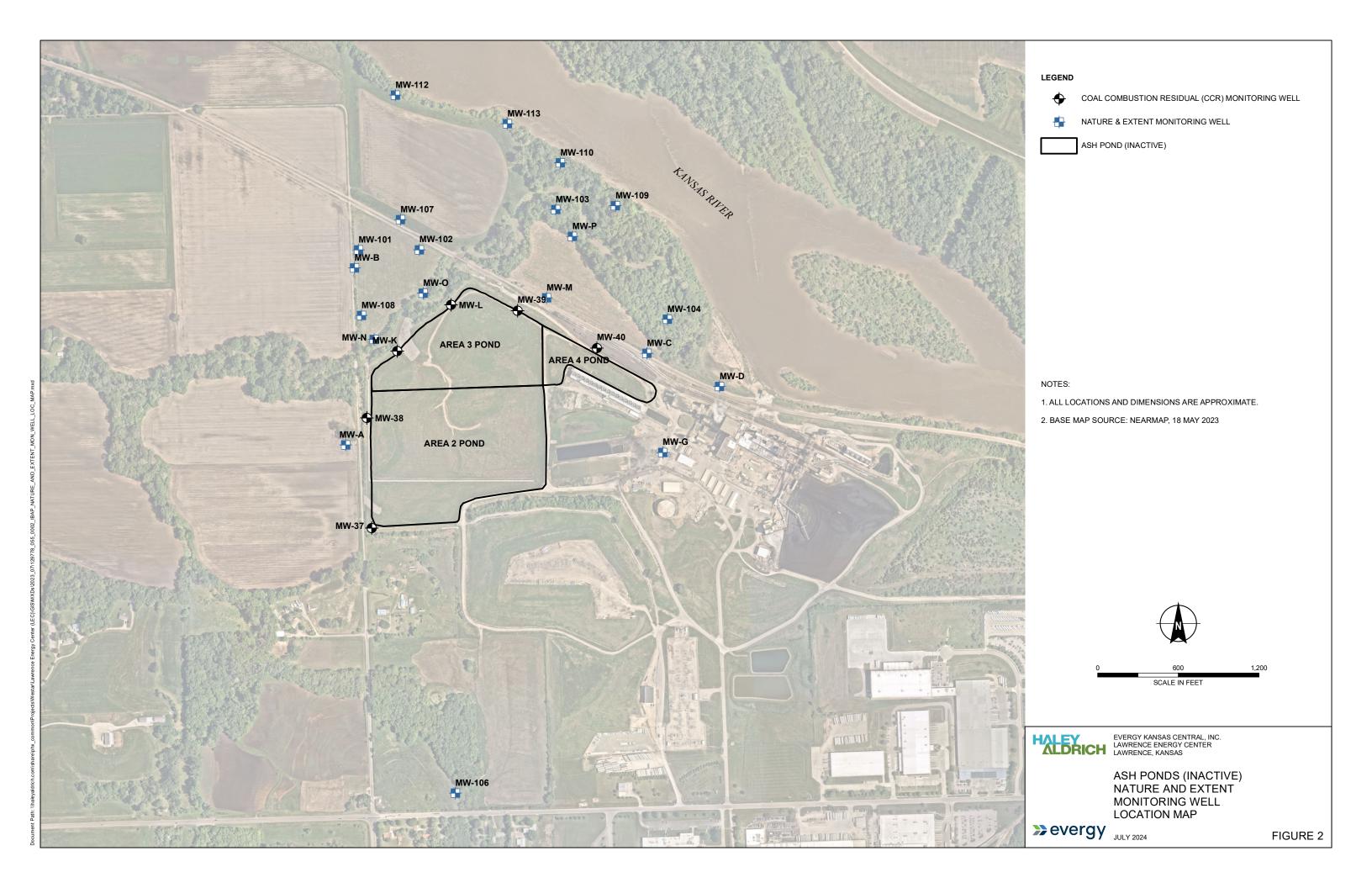
Notes:

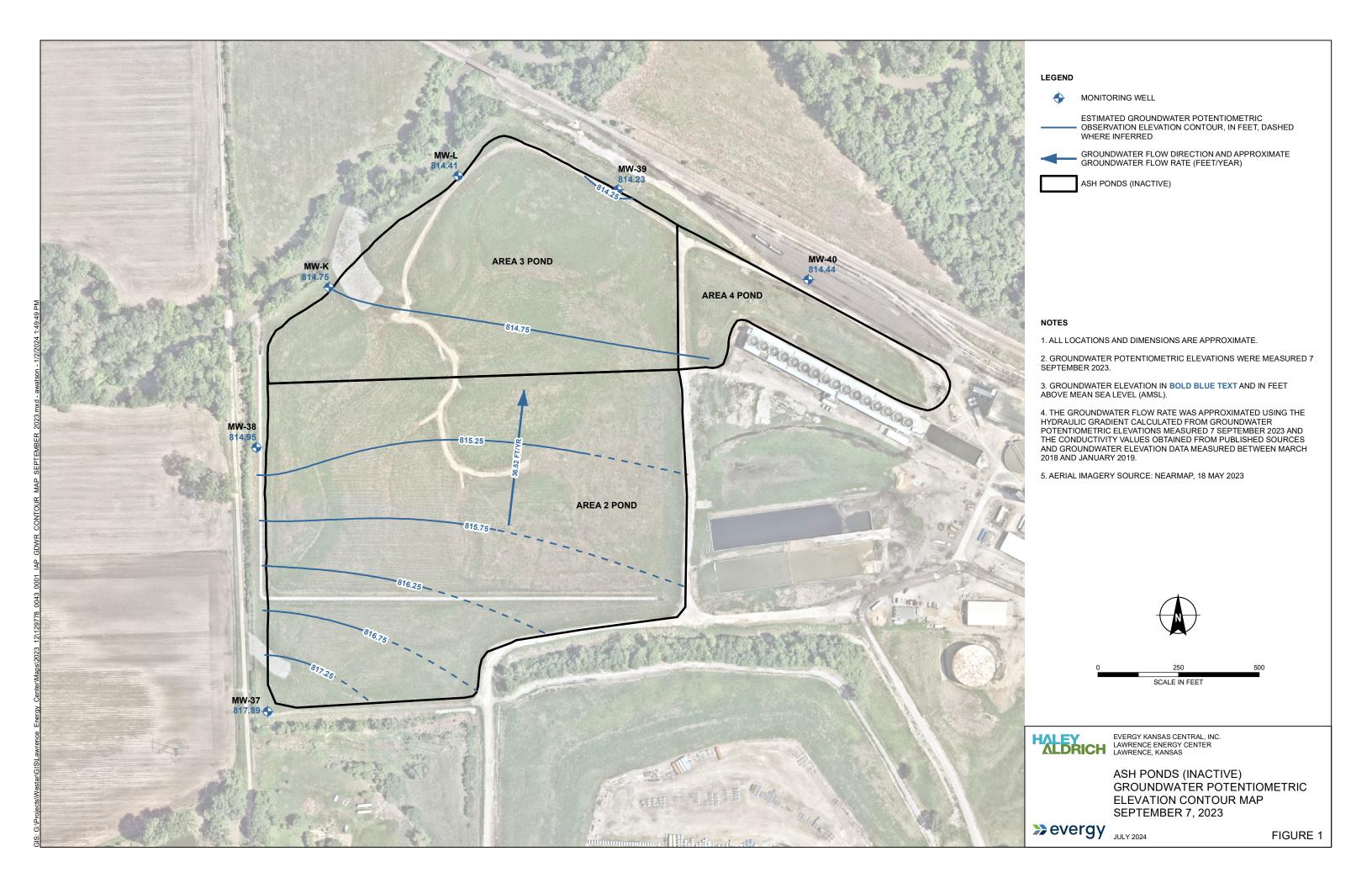
CCR = Coal Combustion Residuals

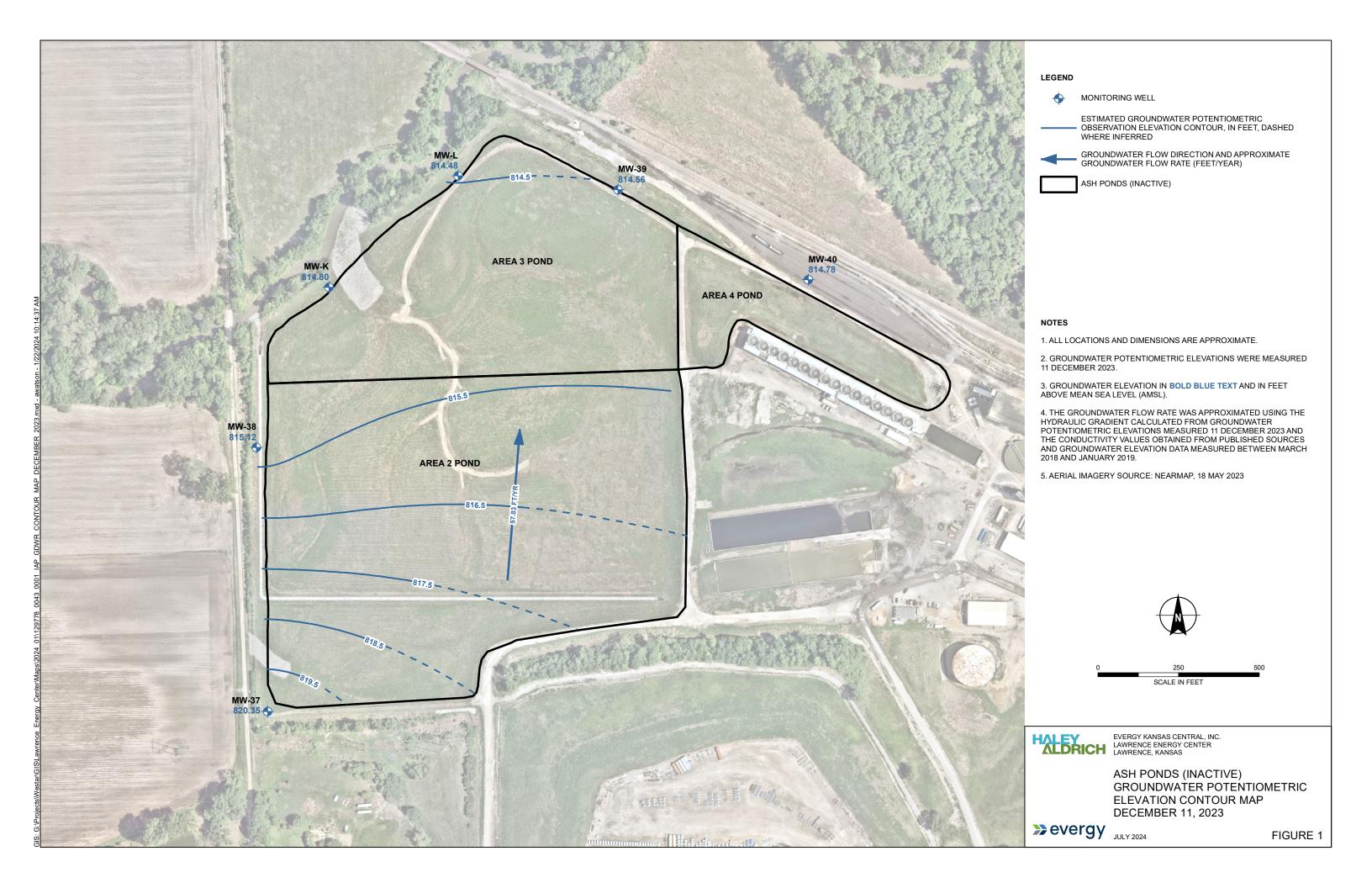
GWPS = Groundwater Protection Standard

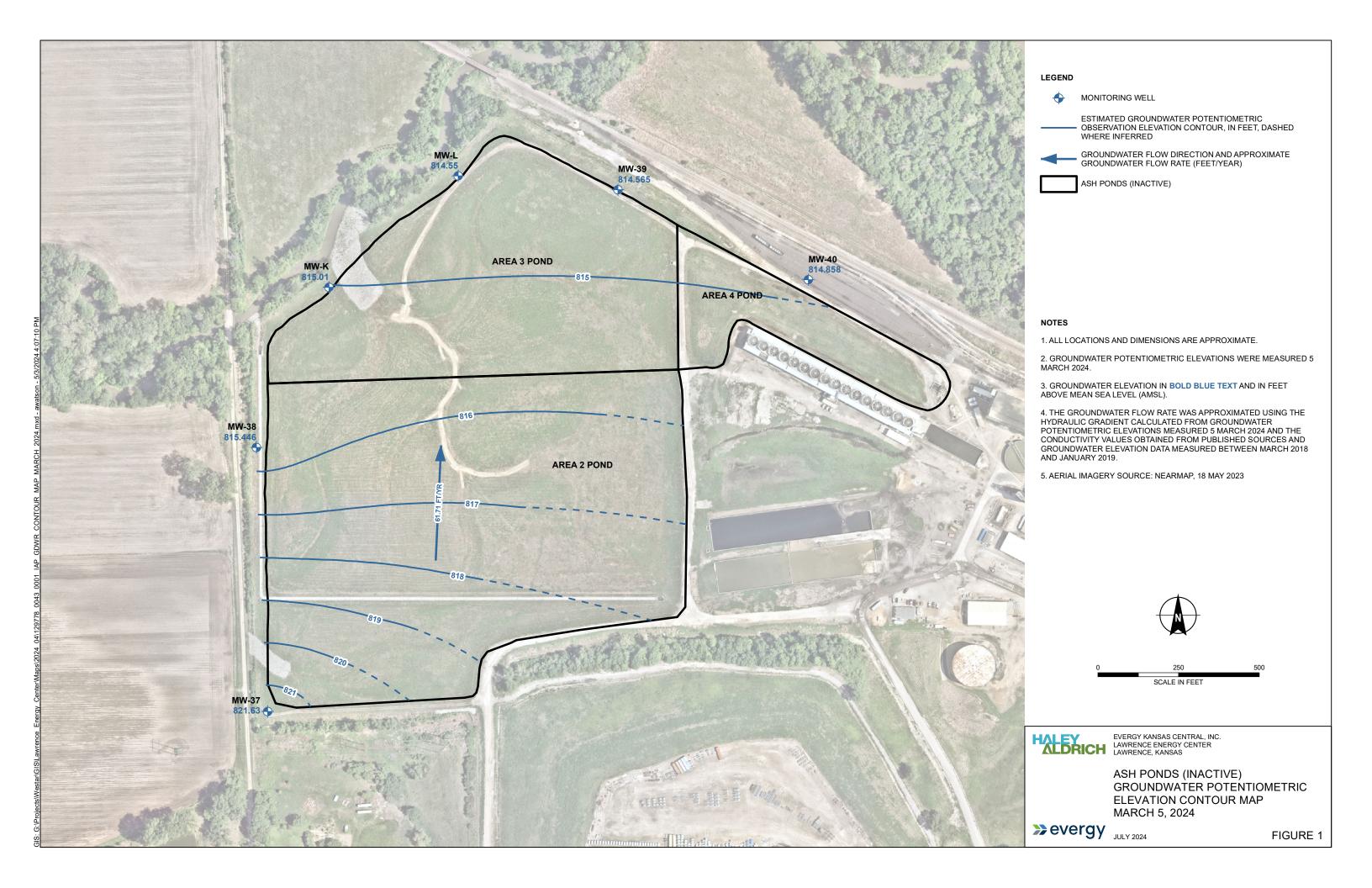
mg/L = milligrams per liter

NA = Not Applicable


 $^{^1 \ \}textit{Interwell background data collected from 03/07/2018 through 09/07/2023, unless otherwise noted}.$


 $^{^{\}rm 2}$ Intrawell background data collected from 03/07/2018 through 03/15/2022.


 $^{^{3}}$ Interwell background data collected from 03/07/2018 through 12/16/2022.


FIGURES

ATTACHMENT 1 Statistical Analyses

ATTACHMENT 1-1

March 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

July 21, 2023 File No. 0210209-000

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2023 Semiannual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed July 21, 2023

Lawrence Energy Center

Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive)

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2023** semiannual assessment monitoring groundwater sampling event for the Lawrence Energy Center (LEC) Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds). This semiannual assessment monitoring groundwater sampling event was completed on **March 10, 2023**, with laboratory results received and validated on **May 30, 2023**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents has been detected at statistically significant levels (SSLs) above the groundwater protection standard (GWPS), consistent with the requirements of the Rule. GWPS for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]), was certified by Haley & Aldrich, Inc. on July 14, 2020. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above

Evergy Kansas Central, Inc. July 21, 2023 Page 2

background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if an SSL existed.

STATISTICAL EVALUATION

Either an interwell or intrawell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data, and the intrawell evaluation compares the most recent values from each compliance well against a background dataset composed of its own historical data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semiannual assessment monitoring data.

The parametric TL methods were used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2023** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

Evergy Kansas Central, Inc. July 21, 2023 Page 3

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-37 (for interwell evaluation) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **March 2022** (interwell evaluation), except for cobalt, which was updated through **December 2022.** Background concentrations were updated through **March 2022** for intrawell evaluation.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the March 2023 semiannual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent an SSL. Based on previous compliance sampling events, statistical evaluations, and associated alternative source demonstrations, an intrawell comparison is utilized for MW-38 for fluoride statistical evaluations. Interwell comparisons are being utilized for all other well and constituent evaluations. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation on groundwater sampling data collected in March 2023, the SSLs above GWPS for the LEC inactive Ash Ponds are listed in Table II. All detected SSLs are consistent with previously identified SSLs at the LEC inactive Ash Ponds, with the addition of lithium at MW-39.

Enclosures:

Table I – Summary of Semiannual Assessment Groundwater Monitoring Statistical Evaluation
Table II – Statistically Significant Levels of Appendix IV Constituents – March 2023 Sampling Event

TABLES

TABLE I

SUMMARY OF SEMIANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2023 SAMPLING EVENT LAWRENCE ENERGY CENTER ASH PONDS (INACTIVE)

											MCL Con	nparison						Interwell	Analysis	Intrawell	Analysis	Groundwater Protect	tion Standard
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Mean	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2023 Concentration (mg/L)	Upper Tolerance Limit (UTL) (mg/L) ¹	SSI (exceedance above Background at Individual Well)	Background Limit (Upper Prediction Limit) ²	SSI (exceedance above Background at Individual Well)	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL) (mg/L)	SSL
				•	•						CCR Ap	pendix-IV: Arsen	ic, Total (mg/	/L)							•		
MW-37	19/19	0%	-	0.00601	0.0089	2.008E-06	0.001417	0.236	0.01	mg/L	0	0	No	No	Stable	Normal		0.00881				0.010	
MW-38	19/19	0%	-	0.0188	0.037	0.00004562	0.006754	0.3595	0.01	mg/L	19	0	Yes	No	Increasing	Non-parametric	0.030		Yes				Yes
MW-39	19/19	0%	-	0.0118	0.014	1.751E-06	0.001323	0.1123	0.01	mg/L	16	0	No	No	Stable	Normal	0.0099		Yes				No
MW-40	19/19	0%	-	0.0148	0.027	9.064E-06	0.003011	0.2036	0.01	mg/L	19	0	Yes	No	Stable	Non-parametric	0.013		Yes				Yes
MW-K MW-L	19/19 19/19	0% 0%	-	0.0768 0.0244	0.16 0.029	0.0004756 4.912E-06	0.02181 0.002216	0.284 0.09095	0.01 0.01	mg/L	19 19	0	Yes No	No No	Stable Increasing	Non-parametric Normal	0.066		Yes Yes				Yes
IVIVV-L	19/19	076	-	0.0244	0.023	4.912L-00	0.002210	0.09093	0.01	mg/L		ppendix-IV: Bariu			increasing	Normal	0.020		ies				163
MW-37	19/19	0%	_	0.0631	0.081	0.0001448	0.01203	0.1909	2	mg/L	0	0	No	No	Increasing	Normal		0.0804				2	
MW-38	19/19	0%	-	0.0374	0.051	0.00003548	0.005956	0.1592	2	mg/L	0	0	No	No	Stable	Normal	0.051		No			_	No
MW-39	19/19	0%	-	0.0317	0.034	1.871E-06	0.001368	0.0431	2	mg/L	0	0	No	No	Stable	Normal	0.031		No				No
MW-40	19/19	0%	-	0.0343	0.039	0.00000376	0.001939	0.0566	2	mg/L	0	0	No	No	Increasing	Normal	0.034		No				No
MW-K	19/19	0%	-	0.0426	0.058	0.00003002	0.005479	0.1285	2	mg/L	0	0	Yes	No	Decreasing	Normal	0.047		No				No
MW-L	19/19	0%	-	0.0472	0.094	0.0002561	0.016	0.339	2	mg/L	0	0	Yes	No	Decreasing	Normal	0.042		No				No
				,	•	,					CCR A	ppendix-IV: Coba	lt, Total (mg/	L)							•		
MW-37	0/17	100%	0.001-0.001	0.001		0	0	0	0.006	mg/L	0	0	NA	NA	NA	NA		0.0013				0.006	
MW-38	0/17	100%	0.001-0.001	0.001		0	0	0	0.006	mg/L	0	0	NA	NA	NA	NA	< 0.0010		No				No
MW-39	12/17	29%	0.001-0.003	0.00132	0.0016	2.59E-07	0.000509	0.3863	0.006	mg/L	0	0	Yes	No	Stable	Normal	0.0010		No				No
MW-40 MW-K	0/17 6/17	100% 65%	0.001-0.002 0.001-0.002	0.00106 0.00129	0.0028	5.882E-08 2.411E-07	0.0002425 0.000491	0.2291 0.3812	0.006 0.006	mg/L	0	0	NA No	NA No	NA Docreasing	NA Normal	< 0.0010 < 0.0010		No No				No No
MW-L	0/17	100%	0.001-0.002	0.00129	0.0028	2.411E-07 2.794E-07	0.000491	0.3812	0.006	mg/L mg/L	0	0	NA NA	No NA	Decreasing NA	NA	< 0.0010		No				No
IVIVV-L	0/1/	10070	0.001 0.003	0.00110		2.7342-07	0.0003200	0.4433	0.000	1116/ L		Appendix-IV: Flu		IVA	INA	INA	V 0.0010		140		1		INO
MW-37	14/20	30%	0.2-0.2	0.293	0.44	0.006675	0.0817	0.2788	4	mg/L	0	0	No	No	Decreasing	Normal		0.449				4.0	
MW-38	20/20	0%	-	4.3	5.5	0.8331	0.9128	0.212	4	mg/L	12	0	Yes	No	Decreasing	Non-parametric	3.3		Yes	5.500	No	5.5	No
MW-39	19/20	5%	0.2-0.2	2	3.5	1.035	1.017	0.5091	4	mg/L	0	0	Yes	No	Decreasing	Normal	0.50		Yes				No
MW-40	18/20	10%	0.2-0.2	1.26	2.1	0.3335	0.5775	0.4583	4	mg/L	0	0	No	No	Decreasing	Normal	1.1		Yes				No
MW-K	20/20	0%	-	3.14	3.8	0.4683	0.6844	0.2177	4	mg/L	0	0	Yes	No	Stable	Non-parametric	3.0		Yes				No
MW-L	18/20	10%	0.2-0.2	1.83	3	0.4506	0.6713	0.3668	4	mg/L	0	0	No	No	Stable	Non-parametric	1.8		Yes				No
	1				1	T				,		pendix-IV: Lithiu			1	1					Т		
MW-37	18/19	5%	0.03-0.03	0.0184	0.026	0.00002491	0.004991	0.2717	0.04	mg/L	0	0	No	No	Increasing	Normal	0.054	0.0269	V			0.040	
MW-38 MW-39	20/20	0% 0%	-	0.0689 0.0422	0.084	0.0001237 0.00005266	0.01112 0.007257	0.1614 0.1722	0.04 0.04	mg/L	20 10	0	No Yes	No No	Decreasing Decreasing	Non-parametric Normal	0.054		Yes Yes				Yes No
MW-40	19/19	0%	-	0.0422	0.056	0.00003200	0.007237	0.1722	0.04	mg/L mg/L	17	0	No	No	Decreasing	Normal	0.035		Yes				Yes
MW-K	19/19	0%	-	0.0666	0.089	0.0002012	0.01419	0.2129	0.04	mg/L	19	0	No	No	Stable	Normal	0.048		Yes				Yes
MW-L	19/19	0%	-	0.0611	0.095	0.0002979	0.01726	0.2827	0.04	mg/L	18	0	No	No	Increasing	Normal	0.085		Yes				Yes
										<u> </u>	L	ndix-IV: Molybde											
MW-37	19/19	0%	-	0.115	0.14	0.0004731	0.02175	0.1895	0.1	mg/L	13	0	No	No	Decreasing	Normal		0.152				0.152	
MW-38	19/19	0%	-	0.0808	0.1	0.000174	0.01319	0.1632	0.1	mg/L	1	0	No	No	Decreasing	Normal	0.074		No				No
MW-39	20/20	0%	-	0.175	0.27	0.003104	0.05571	0.3191	0.1	mg/L	18	0	No	No	Increasing	Normal	0.23		Yes				Yes
MW-40	19/19	0%	-	0.105	0.19	0.001893	0.04351	0.4146	0.1	mg/L	8	0	No	No	Decreasing	Normal	0.061		No				No
MW-K	19/19	0%	-	0.0255	0.04	0.00007929	0.008905	0.3491	0.1	mg/L	0	0	No	No	Stable	Normal	0.029		No				No
MW-L	19/19	0%	-	0.0448	0.055	0.0000267	0.005167	0.1152	0.1	mg/L	0	0	No	No No	Stable	Normal	0.047		No				No
NAVA 27	1//17	100/	0.0036.0.455	0.705	250	0.2504	0.5005	0.7034	I	nC:/I		endix-IV: Radium			Ctabla	Normal		1.01			1	- I	
MW-37 MW-38	14/17 13/17	18% 24%	0.0836-0.455 0.245-0.958	0.785 0.972	2.56 1.88	0.3581 0.3269	0.5985 0.5717	0.7624 0.5885	5 5	pCi/L pCi/L	0	0	Yes No	No No	Stable Stable	Normal Normal	1.18	1.91	No			5	No
MW-39	13/17	24%	0.245-0.958	0.972	1.88	0.3269	0.5717	0.362	5	pCi/L pCi/L	0	0	No	No	Stable	Normal	1.18		No No				No
MW-40	14/17	18%	0.484-0.320	0.918	1.61	0.1182	0.4465	0.4865	5	pCi/L	0	0	No	No	Stable	Normal	1.55		No				No
MW-K	16/17	6%	0.91-0.91	1.17	2.73	0.3331	0.5772	0.4925	5	pCi/L	0	0	Yes	No	NA	Normal	0.763		No				No
MW-L	14/17	18%	0.834-1.1	0.981	2.08	0.2378	0.4876	0.4971	5	pCi/L	0	0	No	No	NA	Normal	0.575		No				No
Notes:		LI CONTRACTOR OF THE CONTRACTO														<u> </u>			'				-

 1 Interwell background data collected from 03/07/2018 through 03/15/2022, unless otherwise noted.

GWPS = groundwater protection standard

MCL = maximum contaminant level

mg/L = milligrams per liter NA = not analyzed

pCi/L = picoCuries per Liter

RSL = regional screening level SSI = statistically significant increase

Intrawell background data collected from 03/07/2018 through 03/15/2022.
 Interwell background data collected from 03/07/2018 through 12/16/2022.
 Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

CCR = coal combustion residuals

TABLE II STATISTICALLY SIGNIFICANT LEVELS OF APPENDIX IV CONSTITUENTS MARCH 2023 SAMPLING EVENT

LAWRENCE ENERGY CENTER INACTIVE ASH PONDS

Constituent	Well ID	Groundwater Protection Standard (mg/L)
	MW-38	
Arsenic	MW-40	0.010
Arsenic	MW-K	0.010
	MW-L	
	MW-38	
Lithium	MW-40	0.040
Littiiuiii	MW-K	0.040
	MW-L	
Molybdenum	MW-39	0.152

Notes:

mg/L = milligrams per liter

ATTACHMENT 1-2

September 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation

TECHNICAL MEMORANDUM

February 6, 2024 File No. 0210309-000

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: September 2023 Semiannual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed February 6, 2024 Lawrence Energy Center

Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive)

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2023** semiannual assessment monitoring groundwater sampling event for the Lawrence Energy Center (LEC) Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds). This semiannual assessment monitoring groundwater sampling event was completed on **September 7, 2023**, with laboratory results received and validated on **December 19, 2023**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSLs) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPS for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f) (1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on July 14, 2020. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above

Every Kansas Central, Inc. February 6, 2024 Page 2

background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if an SSL existed.

STATISTICAL EVALUATION

Either an interwell or intrawell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data, and the intrawell evaluation compares the most recent values from each compliance well against a background dataset composed of its own historical data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semiannual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **September 2023** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if an SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

Every Kansas Central, Inc. February 6, 2024 Page 3

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-37 (for interwell evaluation) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **September 2023** (interwell evaluation), except for cobalt and combined radium, which was updated through **December 2022.** Background concentrations were updated through **March 2022** for intrawell evaluation.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **September 2023** semiannual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent an SSL. Based on previous compliance sampling events, statistical evaluations, and associated alternative source demonstrations, an intrawell comparison is utilized for MW-38 for fluoride statistical evaluations. Interwell comparisons are being utilized for all other well and constituent evaluations. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation on groundwater sampling data collected in September 2023, the SSLs above GWPS for the LEC inactive Ash Ponds are listed in Table II. All detected SSLs are consistent with previously identified SSLs at the LEC inactive Ash Ponds.

Enclosures:

Table I – Summary of Semiannual Assessment Groundwater Monitoring Statistical Evaluation Table II – Statistically Significant Levels of Appendix IV Constituents – September 2023 Sampling Event

TABLES

TABLE I

SUMMARY OF SEMIANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER 2023 SAMPLING EVENT LAWRENCE ENERGY CENTER ASH PONDS (INACTIVE)

										MCL Con	nparison						Interwel	l Analysis	Intrawell A	nalysis	Groundwater Protect	ion Standard
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	September 2023 Concentration (mg/L)	Upper Tolerance Limit (UTL) (mg/L) ¹	SSI (Exceedance above Background at Individual Well)	Background Limit (Upper Prediction Limit) ²	SSI (Exceedance above Background at Individual WeII)	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL) (mg/L)	SSL
										CC	R Appendix-IV: Ars	enic, Total (r	ng/L)		-							
MW-37 (ugradient)	20/20	0%	-	0.0089	2.016E-06	0.00142	0.2394	0.01	mg/L	0	0	No	No	Stable	Non-parametric	0.0045	0.00890				0.010	
MW-38	20/20	0%	-	0.037	0.00004582	0.006769	0.3535	0.01	mg/L	20	0	No	No	Increasing	Non-parametric	0.026		Yes				Yes
MW-39	20/20	0%	-	0.014	0.00000169	0.0013	0.1107	0.01	mg/L	17	0	No	No	Decreasing	Normal	0.011		Yes				Yes
MW-40 MW-K	20/20 20/20	0% 0%	-	0.027 0.16	8.589E-06 0.0004525	0.002931	0.198 0.2759	0.01 0.01	mg/L mg/L	20	0	Yes	No No	Stable Stable	Non-parametric	0.015 0.083		Yes Yes				Yes Yes
MW-L	20/20	0%	-	0.029	0.0004323	0.002127	0.2739	0.01	mg/L	20	0	No	No	Increasing	Non-parametric Normal	0.083		Yes				Yes
IVIV E	20/20	070		0.023	0.000003	0.002230	0.03127	0.01	1116/ -		R Appendix-IV: Bar			mercusing	Homai	0.027		163				103
MW-37 (ugradient)	20/20	0%	-	0.081	0.0001469	0.01212	0.1901	2	mg/L	0	0	No	No	Increasing	Normal	0.077	0.0852				2.000	
MW-38	20/20	0%	-	0.051	0.00004032	0.006349	0.1671	2	mg/L	0	0	No	No	Increasing	Normal	0.049		No				No
MW-39	20/20	0%	-	0.034	2.147E-06	0.001465	0.04637	2	mg/L	0	0	No	No	Stable	Normal	0.029		No				No
MW-40	20/20	0%	-	0.039	3.589E-06	0.001895	0.05524	2	mg/L	0	0	No	No	Stable	Normal	0.035		No				No
MW-K	20/20	0%	-	0.058	0.00002988	0.005467	0.1274	2	mg/L	0	0	Yes	No	Stable	Normal	0.048		No				No
MW-L	20/20	0%	-	0.094	0.00025	0.01581	0.3393	2	mg/L	0	0	Yes	No No	Decreasing	Normal	0.035		No				No
MW-37 (ugradient)	0/18	100%	0.001-0.001	1	0	0	0	0.006	mg/L	0	R Appendix-IV: Co	NA	NA	NA	NA	<0.0010	0.001 ³	T	I		0.006	
MW-38	0/18	100%	0.001-0.001		0	0	0	0.006	mg/L	0	0	NA NA	NA NA	NA NA	NA NA	<0.0010	0.001	No			0.000	No
MW-39	12/18	33%	0.001-0.001	0.0016	2.494E-07	0.0004994	0.3842	0.006	mg/L	0	0	Yes	No	Stable	Normal	<0.0010		No				No
MW-40	0/18	100%	0.001-0.002		5.556E-08	0.0002357	0.2233	0.006	mg/L	0	0	NA	NA	NA	NA	<0.0010		No				No
MW-K	6/18	67%	0.001-0.002	0.0028	2.315E-07	0.0004812	0.3782	0.006	mg/L	0	0	No	No	Decreasing	Normal	<0.0010		No				No
MW-L	0/18	100%	0.001-0.003		2.647E-07	0.0005145	0.441	0.006	mg/L	0	0	NA	NA	NA	NA	<0.0010		No				No
											CCR Appendix-IV: I	Fluoride (mg	/L)									
MW-37 (ugradient)	14/21	33%	0.2-0.2	0.44	0.006753	0.08218	0.2848	4	mg/L	0	0	No	No	Decreasing	Non-parametric	<0.20	0.440				4.0	
MW-38	21/21	0%	-	5.5	0.8089	0.8994	0.2103	4	mg/L	12	0	No	No	Decreasing	Non-parametric	3.7		Yes	5.500	No	5.5	No
MW-39 MW-40	20/21	5% 14%	0.2-0.2	3.5	1.007	1.003 0.6085	0.5106	4	mg/L	0	0	No No	No No	Decreasing	Normal Normal	1.3 <0.20		Yes No				No
MW-K	18/21 21/21	0%	0.2-0.2	2.1 3.8	0.3703 0.459	0.6085	0.5031 0.2173	4	mg/L mg/L	0	0	Yes	No	Decreasing Stable	Non-parametric	2.6		Yes				No No
MW-L	19/21	10%	0.2-0.2	3.8	0.4495	0.6704	0.3601	4	mg/L	0	0	No	No	Stable	Non-parametric	2.5		Yes				No
								<u> </u>			R Appendix-IV: Lith				1			1				
MW-37 (ugradient)	19/20	5%	0.03-0.03	0.026	0.00002467	0.004967	0.2671	0.04	mg/L	0	0	No	No	Increasing	Normal	0.023	0.0274				0.040	
MW-38	20/20	0%	-	0.084	0.000138	0.01175	0.1725	0.04	mg/L	20	0	No	No	Decreasing	Non-parametric	0.052		Yes				Yes
MW-39	20/20	0%	-	0.062	0.00004961	0.007043	0.1663	0.04	mg/L	10	0	Yes	No	Decreasing	Normal	0.037		Yes				No
MW-40	20/20	0%	-	0.056	0.00002346	0.004844	0.107	0.04	mg/L	18	0	No	No	Decreasing	Normal	0.043		Yes				Yes
MW-K	20/20	0%	-	0.089	0.000208	0.01442	0.2195	0.04	mg/L	20	0	No	No	Stable	Normal	0.048		Yes				Yes
MW-L	20/20	0%	-	0.095	0.0003242	0.018	0.2881	0.04	mg/L	19 CCR A	0 ppendix-IV: Molyb	No Idonum Tota	No I (mg/I)	Increasing	Normal	0.090		Yes				Yes
MW-37 (ugradient)	20/20	0%	I -	0.14	0.0005234	0.02288	0.2027	0.1	mg/L	13		No	No No	Decreasing	Normal	0.076	0.153				0.153	
MW-38	20/20	0%	-	0.14	0.0003234	0.01287	0.2027	0.1	mg/L	1	0	No	No	Decreasing	Normal	0.085	0.133	No			0.155	No
MW-39	20/20	0%	-	0.27	0.002937	0.05419	0.3149	0.1	mg/L	18	0	No	No	Increasing	Normal	0.18		Yes				Yes
MW-40	20/20	0%	-	0.19	0.001899	0.04358	0.4245	0.1	mg/L	8	0	No	No	Decreasing	Normal	0.059		No				No
MW-K	20/20	0%	-	0.04	0.00007614	0.008726	0.3452	0.1	mg/L	0	0	No	No	Stable	Normal	0.021		No				No
MW-L	20/20	0%	-	0.055	0.00002552	0.005052	0.1124	0.1	mg/L	0	0	No	No	Stable	Normal	0.047		No				No
			ı					1			ppendix-IV: Radiu					ı	1 -				1	
MW-37 (ugradient)	14/18	22%	0.0836-0.579		0.3393	0.5825	0.7317	5	pCi/L	0	0	Yes	No	Stable	Normal	0.984	1.913				5	
MW-38	13/18 13/18	28%	0.245-1.18	1.88	0.3164	0.5625	0.5661	5	pCi/L	0	0	No	No	Stable Stable	Normal	1.37		No No				No
MW-39 MW-40	15/18	28% 17%	0.484-1.16 0.553-1.37	1.62 1.61	0.1116 0.198	0.334	0.3534 0.4725	5 5	pCi/L pCi/L	0	0	No No	No No	Increasing	Normal Normal	0.872 1.35		No No				No No
MW-K	16/18	11%	0.763-0.91	2.73	0.138	0.5601	0.4723	5	pCi/L	0	0	Yes	No	Stable	Normal	1.23		No				No
MW-L	14/18	22%	0.575-1.1	2.08	0.2285	0.478	0.4794	5	pCi/L	0	0	Yes	No	Stable	Normal	1.27		No				No
Notes:			•	•			•			•			•	•	•	•		-				

Notes:

1 Interwell background data collected from 03/07/2018 through 09/07/2023, unless otherwise noted.

 2 Intrawell background data collected from 03/07/2018 through 03/15/2022.

* Values obtained from U.S. Environmental I CCR = coal combustion residuals GWPS = groundwater protection standard MCL = maximum contaminant level mg/L = milligrams per liter NA = not analyzed pCi/L = picoCuries per Liter RSL = regional screening level SSI = statistically significant increase SSI = statistically significant level

SSL = statistically significant level

³ Interwell background data collected from 03/07/2018 through 12/16/2022.

* Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

TABLE II STATISTICALLY SIGNIFICANT LEVELS OF APPENDIX IV CONSTITUENTS SEPTEMBER 2023 SAMPLING EVENT

LAWRENCE ENERGY CENTER INACTIVE ASH PONDS

Constituent	Well ID	Groundwater Protection Standard (mg/L)
	MW-38	
	MW-39	
Arsenic	MW-40	0.010
	MW-K	
	MW-L	
	MW-38	
Likhioon	MW-40	0.040
Lithium	MW-K	0.040
	MW-L	
Molybdenum	MW-39	0.153

Notes:

mg/L = milligrams per liter

ATTACHMENT 2 Laboratory Analytical Reports

ATTACHMENT 2-1
September 2023 Semiannual Sampling Event
Laboratory Analytical Reports

September 29, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 08, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy Laura Hines, Evergy, Inc. Shannon Hughes, Evergy Adam Irvin, Evergy Samantha Kaney, Haley & Aldrich Danielle Oberbroeckling, Haley & Aldrich Danielle Oberbroekling, Haley Aldrich Adriana Sosa, Haley & Aldrich, Inc. Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60437135001	MW-37-090723	Water	09/07/23 11:25	09/08/23 15:00
60437135002	MW-38-090723	Water	09/07/23 09:35	09/08/23 15:00
60437135003	MW-39-090723	Water	09/07/23 10:30	09/08/23 15:00
60437135004	MW-40-090723	Water	09/07/23 11:20	09/08/23 15:00
60437135005	MW-K-090723	Water	09/07/23 12:05	09/08/23 15:00
60437135006	MW-L-090723	Water	09/07/23 11:25	09/08/23 15:00
60437135007	LEC IAP-DUP-090723	Water	09/07/23 15:10	09/08/23 15:00

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60437135001	MW-37-090723	EPA 903.1	 LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60437135002	MW-38-090723	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60437135003	MW-39-090723	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60437135004	MW-40-090723	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60437135005	MW-K-090723	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60437135006	MW-L-090723	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60437135007	LEC IAP-DUP-090723	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: September 29, 2023

General Information:

7 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: September 29, 2023

General Information:

7 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.Date:September 29, 2023

General Information:

7 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: MW-37-090723 PWS:	Lab ID: 6043 Site ID:	7135001 Collected: 09/07/23 11:25 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			- 1	
Radium-226	EPA 903.1	0.266 ± 0.453 (0.799) C:NA T:89%	pCi/L	09/25/23 12:30	6 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.718 ± 0.447 (0.838) C:81% T:84%	pCi/L	09/25/23 15:53	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.984 ± 0.900 (1.64)	pCi/L	09/29/23 11:52	2 7440-14-4	

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: MW-38-090723 PWS:	Lab ID: 6043 Site ID:	7135002 Collected: 09/07/23 09:35 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.500 ± 0.644 (1.07) C:NA T:92%	pCi/L	09/25/23 12:36	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.869 ± 0.463 (0.803) C:75% T:83%	pCi/L	09/25/23 16:27	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.37 ± 1.11 (1.87)	pCi/L	09/29/23 11:52	2 7440-14-4	

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: MW-39-090723 PWS:	Lab ID: 6043713 Site ID:	5003 Collected: 09/07/23 10:30 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 903.1	-0.142 ± 0.556 (1.18) C:NA T:92%	pCi/L	09/25/23 12:36	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 904.0	0.872 ± 0.480 (0.851) C:73% T:85%	pCi/L	09/25/23 15:54	1 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.872 ± 1.04 (2.03)	pCi/L	09/29/23 11:52	2 7440-14-4	

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: MW-40-090723 PWS:	Lab ID: 6043 Site ID:	7135004 Collected: 09/07/23 11:20 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.691 ± 0.611 (0.906) C:NA T:95%	pCi/L	09/25/23 12:36	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.663 ± 0.444 (0.841) C:72% T:86%	pCi/L	09/25/23 15:54	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.35 ± 1.06 (1.75)	pCi/L	09/29/23 11:52	2 7440-14-4	

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: MW-K-090723 PWS:	Lab ID: 6043713 : Site ID:	5005 Collected: 09/07/23 12:05 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 903.1	-0.144 ± 0.347 (0.866) C:NA T:91%	pCi/L	09/25/23 12:53	3 13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 904.0	1.23 ± 0.488 (0.722) C:80% T:80%	pCi/L	09/25/23 15:54	15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.23 ± 0.835 (1.59)	pCi/L	09/29/23 11:52	7440-14-4	

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: MW-L-090723 PWS:	Lab ID: 6043713 5 Site ID:	Collected: 09/07/23 11:25 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 903.1	0.293 ± 0.476 (0.828) C:NA T:98%	pCi/L	09/25/23 12:53	3 13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.977 ± 0.479 (0.806) C:76% T:80%	pCi/L	09/25/23 15:54	15262-20-1	
	Pace Analytical Serv	rices - Greensburg				
Total Radium	Total Radium Calculation	1.27 ± 0.955 (1.63)	pCi/L	09/29/23 11:52	7440-14-4	

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Sample: LEC IAP-DUP-090723 PWS:	Lab ID: 6043° Site ID:	7135007 Collected: 09/07/23 15:10 Sample Type:	Received:	09/08/23 15:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.206 ± 0.405 (0.739) C:NA T:90%	pCi/L	09/25/23 12:53	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.510 ± 0.417 (0.829) C:76% T:84%	pCi/L	09/25/23 15:54	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.716 ± 0.822 (1.57)	pCi/L	09/29/23 11:52	2 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

QC Batch: 615747 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60437135001, 60437135002, 60437135003, 60437135004, 60437135005, 60437135006, 60437135007

METHOD BLANK: 2998700 Matrix: Water

Associated Lab Samples: 60437135001, 60437135002, 60437135003, 60437135004, 60437135005, 60437135006, 60437135007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0270 ± 0.296 (0.689) C:80% T:90%
 pCi/L
 09/25/23 15:53

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

QC Batch: 615746 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60437135001, 60437135002, 60437135003, 60437135004, 60437135005, 60437135006, 60437135007

METHOD BLANK: 2998699 Matrix: Water

Associated Lab Samples: 60437135001, 60437135002, 60437135003, 60437135004, 60437135005, 60437135006, 60437135007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.155 ± 0.305 (0.558) C:NA T:99%
 pCi/L
 09/25/23 12:23

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 09/29/2023 02:24 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH POND WELLS CC

Pace Project No.: 60437135

Date: 09/29/2023 02:24 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
60437135001	MW-37-090723	EPA 903.1	615746				
60437135002	MW-38-090723	EPA 903.1	615746				
60437135003	MW-39-090723	EPA 903.1	615746				
60437135004	MW-40-090723	EPA 903.1	615746				
60437135005	MW-K-090723	EPA 903.1	615746				
60437135006	MW-L-090723	EPA 903.1	615746				
60437135007	LEC IAP-DUP-090723	EPA 903.1	615746				
60437135001	MW-37-090723	EPA 904.0	615747				
60437135002	MW-38-090723	EPA 904.0	615747				
60437135003	MW-39-090723	EPA 904.0	615747				
60437135004	MW-40-090723	EPA 904.0	615747				
60437135005	MW-K-090723	EPA 904.0	615747				
60437135006	MW-L-090723	EPA 904.0	615747				
60437135007	LEC IAP-DUP-090723	EPA 904.0	615747				
60437135001	MW-37-090723	Total Radium Calculation	619014				
60437135002	MW-38-090723	Total Radium Calculation	619014				
60437135003	MW-39-090723	Total Radium Calculation	619014				
60437135004	MW-40-090723	Total Radium Calculation	619014				
60437135005	MW-K-090723	Total Radium Calculation	619014				
60437135006	MW-L-090723	Total Radium Calculation	619014				
60437135007	LEC IAP-DUP-090723	Total Radium Calculation	619014				

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample

WO#:60437135

AMADY/CAL SERVICES Revision: 2 Fff.		60437135
	ective Date: 01/12/2022	ISSUEU DY. LEHENA
Client Name: Evergy Ks Central		,
Courier: FedEx □ UPS □ VIA □ Clay □	PEX D ECI D Pac	
	ce Shipping Label Used?	Yes □ No/□
Custody Seal on Cooler/Box Present: Yes No	,	No 🗆
Packing Material: Bubble Wrap ☐ Bubble Bags Thermometer Used: 7298 Type o		None ☐ Other □
	of Ice: Wet Blue Non	Date and initials of person
Cooler Temperature (°C): As-read 25. Y Corr. Fac	tor <u>-0.3</u> Corrected _	examining contents;
Temperature should be above freezing to 6°C	4 5 5	p-4/8125
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ZNo □N/A	
Rush Turn Around Time requested:	□Yes ZNo □N/A	
Sufficient volume:	Yes ONO ON/A	
Correct containers used:	ZYes □No □N/A	
Pace containers used:	Ayes ONO ON/A	
Containers intact:	Yes Ono On/A	
	/	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	Yes No N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	☐Yes ☐No ☐N/A	
Samples contain multiple phases? Matrix:	□Yes ☑No □N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		ample IDs, volumes, lot #'s of preservative and the time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	11.0	amo dadoo.
Cyanide water sample checks:		16
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
	□Yes □No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/Ti	ime:	
Comments/ Resolution:		
Project Manager Review:	Date:	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	A																										_					
	Client Information:	Section B Required Proj	ect Info	rmation:						tion (ion:															Pa	age:	1	of	1	
Company	EVERGY KANSAS CENTRAL, INC.	Report To: Ja	ke Hu	mphrey					· y	ntion:			unts	Pay	/able)	_				1					d	_	_				
Address:	400 E Van Buren St	Сору То: La	ura H	ines, Sam	antha K	aney			Com	npany I	Name	: E	VER	GY	KAN	ISAS	S CI	ENT	RAL	, INC	REG	3111	ΔΤΩ	RY /	AGE	NCY	_					
	Suite 545 Phoenix, AZ 85004							_	Addr			_	ΕAS							_	_	NPI	_	_		_		NATE	. P. C	DRINKI	INIC VA	ATED
Email To:	skaney@haleyaldrich.com	Purchase Orde	er No.:						Pace	Quote)						_		_		1	US					.VU V	VAIC	[-			AIEK
Phone:	507-251-2232 Fax:	Project Name:	LFO	2 Inactive	Ash Por	nd Wells C	CR	-		rence: Projec	ct /	Alice	Spil	lor C	913-5	563	140	2		_	ļΞ			_	R	JRA		E		OTHER		
	ed Due Date/TAT:	Project Numbe			7.0111 01			-	Mana					ici c	710-0	505-	140				Sit	e Lo				KS	j					
		, reject rtaining							,	T TOILL	J III. 9	9000	, 8			_	_	_			L		TATE	_			_	-				
				_	_			_	_	_		_		_		4	-	Re	que	sted	Anal	ysis	Filt	ered	(Y/N	4)	↲					
	Section D Valid Matrix C Required Client Information MATRIX	Odes CODE DW WT	C=COMP)		COLL	ECTED		L	ı		Ρ	rese	ervat	ives		N/A	[]	۱,	, ,	ار	Н											
ΙI	DRINKING WATER WATER	DW WT	l i					l S	ı		ΠÌ	T	Τ	П	Т	Ť	Ť	Ť	+	+	Н	7	+	╅	1	Н	Ħ					
	PRODUCT	P E	AB (COMP		COMPO END/GR	SITE RAB	COLLECTION		Ш				Н		Т	1	1	1.	.	Н						П	Ξĺ				
	SOIL/SOLID OIL	OL g						Ιğ	ဖွ					Н		1-	•		Combined		Н	-					\Box					
	SAMPLE ID WIPE AIR OTHER	AD	၂ ၅					¥		Ш				Ш		Toef	2				П	-1				П	П	Chlorine (Y/N)		27.		
ΙI	Sample IDs MUST BE UNIQUE TISSUE	TS G	TYPE					TEMP	₹	§		1	1	Ш					1228		П					П	П	ਤੋਂ	,			
*		Ä	<u> </u>					4.1	ទូ	ese	4		_	ပ္ရြ	al a	<u>ا ۽</u>		228	2 2	Sheets	Н						П	<u>Fa</u>	1		10	
TEM		LS CO XIRTAM	SAMPLE	DATE	TIME		~	SAMPLI	# OF	ğ	H ₂ SO ₄		NaOH	Na ₂ S ₂ O ₃	Methanol		+ Alidiysis	Radium 228	Radium 226/	ac sh	Н					П	П	Residual	ŴΟ	437	()) <u> </u>
1	MW-37-090723	- w	+	DATE	TIME	09/07/23	11:25	NA	-	╬		2	+=		4	╬	7	_	_	_	Н	+	+	╁	+	Н	\vdash	+	Pace	PIN	No./	Lab I.D.
2	MW-38-090723	- W		NA NA	NA NA	09/07/23	9:35	NA	1	\forall		2	\top	Н	+	1	-	x)	\neg	(X	H	\dashv	+	+	+	Н	\vdash	\pm	1	7170		
3	MW-39-090723	- Iw		NA NA	NA NA	09/07/23	10:30	NA		\dagger		2		H		1	-	$\frac{1}{x}$	+	_		+	+	+	+	Н	\vdash	\dashv	\rightarrow			
4	MW-40-090723	w		NA NA	NA NA	09/07/23	11:20	NA.	1	††		2	T	Н	\dashv	1	- 1	$\frac{1}{x}$	_		\vdash	+	+	+	+	Н	\vdash	\dashv	-			
5	MW-K-090723	- w		NA NA	NA NA	09/07/23	12:05	NA	\vdash	$\dagger \dagger$		2		H	\top	1	ı	$\frac{1}{x}$		x	Н	\dashv	+	+	1	Н	\sqcap	\dashv	+			
6	MW-L-090723	- Iw		NA NA	NA NA	09/07/23	11:25	NA	-	11	_	2	T	Н	7	1	-	x >	_	1	H	+	+	+	1		\Box	\dashv	-			
7	LEC IAP-DUP-090723	w	_	NA	NA.	09/07/23	15:10	NA	-	\top		2	T	H	\top	1	-	x >		X	H	1	\top	†	1	H	\sqcap	\dashv	+			
8						00/01/20	10.10	1	Ť	$\dagger \dagger$				П		1	Ħ		1	1	H	\top	+	+	T	H	\Box	\dashv				
9			1					T	T	T		T	T	П	7	1	t	T		†	П	1	+	1		Н	\Box	十			_	
10								\vdash	Г	11		1		П	\exists		r	T	1	1	\Box			1		П	\sqcap	7				
11										\Box				П		1	T	1	1	1	П	T		1	T	П	\Box	\dashv				
12								T		T				П		7	r	1	1	T	П	T	7	1		П	П	T				
	ADDITIONAL COMMENTS	RE	LINQU	ISHED BY /	AFFILIAT	ION	DATE	Ē.		TIME				ACC	EPT	ED B	Y / A	FFIL	LATIO	DN		D	ATE		TIM	E	Γ.	_	SAM	PLE COND	ITION!	3
			Jaso	on R. Frank	s / SCS		9/8/2	3	_	15:00				Í	A	P	L	0				118	123	1	Co	de	25.	J	N	Y		У
							3,3,2	_		,0.00	\neg										\neg	70		+	,,,			1	-/-		+	
											1										1			t				+			+	
											7													T							\top	
Pa					SAMPLI	ER NAME A	ND SIGNA	ATUF	₹E																		ç	, 🕇	- o	oler		Itact
ge 20						PRINT Nam				on R	. Fra	nks	_	_	/	-	_	047	- 61								Cemp in °C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)
Page 20 of 25						SIGNATURI	E of SAMP	LER:	7	00	n	1	-3	h	i	10		(MM					9/8	/23					- Re	Sea		Sarr

	rkorder: 6043 ort To	7135 Work	order N	ame: LEC IN	ACTIVE ASH	POND V	VELL	s cc c	Owne	r Rece	ived	Dat	e:	9/8/20	Results Inalysis	Reques	ted By: 9/25	/2023
Alico Pac 960 Len	e Spiller e Analytical Kan 3 Loiret Blvd. exa, KS 66219 ne (913)599-566			Pace / 1638 Suites Green	Analytical Pittsb Roseytown Roas 2,3, & 4 Isburg, PA 1566 (724)850-5606	ad 01					Radium Calc & QC Sheets	Radium 226	Radium 228					
							P	reserved	I Cont	ainers		<u>"</u>	4					
ltem	Sample ID		Sample Type	Collect Date/Time	Lab ID	Matrix	HN03				Combinded						LAB US	E ONLY
1	MW-37-090723		PS	9/7/2023 11:25	60437135001	Water	2				Х	Х	Х				501	
2	MW-38-090723		PS	9/7/2023 09:35	60437135002	Water	2				Х	Х	Х				902	
3	MW-39-090723		PS	9/7/2023 10:30	60437135003	Water	2				Х	Х	Х				90 3	
4	MW-40-090723		PS	9/7/2023 11:20	60437135004	Water	2				Х	Х	Х				P00	
5	MW-K-090723		PS	9/7/2023 12:05	60437135005	Water	2				Х	Х	Х				005	
6	MW-L-090723		PS	9/7/2023 11:25	60437135006	Water	2				Х	Х	Х				900	
7	LEC IAP-DUP-0907	23	PS	9/7/2023 15:10	60437135007	Water	2				Х	Х	Х				703	
				•						w 189, 189, 19	0000000	8.6			Coi	mments		
Trar	sfers Release	L ZJOH JA		Date/Time	Received E		125			Date/Tin 们かん								

WO#:30620991

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

DC#_Title: ENV-FRM-	GBUR	8-008	8 v05	_Sample Conditio	ո Upon Receipt-
Pittsburgh					30620991
Pace' Effective Date: 07/06/2023					Due Date: 10/03/23
Isimpocisisos				PM: MAR	
Client Name: Pace Kunsu				CLIENT: PA	CE_80_LERS
					luitial / Data
Courier: Ped Ex UPS USPS Client	Com	mercia	al 🗌 Pa	ace 🗌 Other	Initial / Date
Tracking Number: 6431 1341 938	<u>5</u>				Examined By: W 9112123
Custody Seal on Cooler/Box Present: Ty	es □No	e: W	/et Bl	ue None	Temped By:
Cooler Temperature: Observed Temp	E	۰C	Corre	ction Factor:	∘C Final Temp: ∘C
Temp should be above freezing to 6°C					
	1	T	T	pH paper Lot#	D.P.D. Residual Chlorine Lot #
Comments:	Yes	No	NA	1000831	
Chain of Custody Present		ļ		1.	
Chain of Custody Filled Out:	7	_	-	2.	
-Were client corrections present on COC		لات			
Chain of Custody Relinquished	7	7		3.	
Sampler Name & Signature on COC:		43	-	4.	
Sample Labels match COC:	~3		<u> </u>	3.	
-Includes date/time/ID	1-1	and and			
Matrix:	- 1	<u> </u>	1	6.	
Samples Arrived within Hold Time:		<u> </u>		7.	
Short Hold Time Analysis (<72hr		١)		'.	
remaining): Rush Turn Around Time Requested:		1		8.	
Sufficient Volume:	$+$ 7	-	 	9.	
Correct Containers Used:	Ť			10.	
-Pace Containers Used	3				
Containers Intact:	1			11.	
Orthophosphate field filtered:			J	12.	
Hex Cr Aqueous samples field filtered:			7	13.	
Organic Samples checked for dechlorination			1	14:	
Filtered volume received for dissolved tests:			J	15:	
All containers checked for preservation:			<u> </u>	16.	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix				PHOD	
All containers meet method preservation	7]	Initial when completed	Date/Time of
requirements:	<u> </u>	<u> </u>	<u> </u>	Lot# of added Preservative	Preservation
8260C/D: Headspace in VOA Vials (> 6mm)		Ī	1	17.	
624.1: Headspace in VOA Vials (Omm)			1	18.	
Trip Blank Present:	 		J	1	seal present? YES or NO
Rad Samples Screened <0.5 mrem/hr.				Initial when Completed Date	9/12/3 Survey Meter 3
Comments:					

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	LL1
Date:	9/15/2023
Batch ID:	75323
Matrix:	WD

Method Blank Assessment	
MB Sample ID	2998699
MB concentration:	0.155
M/B Counting Uncertainty:	0.305
MB MDC:	0.558
MB Numerical Performance Indicator:	1.00
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

		•						
Laboratory Control Sample Assessment LCSD (Y or N)?								
·	LCS75323	LCSD75323						
Count Date:	9/25/2023							
Spike I.D.:	23-013							
Spike Concentration (pCi/mL):	32.282							
Volume Used (mL):	0.10							
Aliquot Volume (L, g, F):	0.652	1						
Target Conc. (pCi/L, g, F):	4.952							
Uncertainty (Calculated):	0.233	}						
Result (pCi/L, g, F):	4.861							
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.003							
Numerical Performance Indicator:	-0.17							
Percent Recovery:	98.17%							
Status vs Numerical Indicator:	N/A							
Status vs Recovery:	Pass							
Upper % Recovery Limits:	133%							
Lower % Recovery Limits	73%	i						

I	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
ı	Sample Collection Date:	9/6/2023	
Ì	Sample I.D.	92686731002	
ı	Sample MS I.D.	92686731002MS	
1	Sample MSD I.D.		
I	Spike I.D.:	23-013	
ı	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	32.283	
ı	Spike Volume Used in MS (mL):	0.20	
ı	Spike Volume Used in MSD (mL):		
1	MS Aliquot (L, g, F):	0.651	
	MS Target Conc.(pCi/L, g, F):	9.914	
1	MSD Aliquot (L, g, F):		
1	MSD Target Conc. (pCi/L, g, F):		
	MS Spike Uncertainty (calculated):	0.466	
	MSD Spike Uncertainty (calculated):		
ı	Sample Result:	0.190	
	Sample Result Counting Uncertainty (pCi/L, g, F):	0.322	
	Sample Matrix Spike Result:	10.951	
1	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.504	
1	Sample Matrix Spike Duplicate Result:		
	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
ı	MS Numerical Performance Indicator:	1.033	
	MSD Numerical Performance Indicator:	100 550/	
	MS Percent Recovery:	108.55%	
	MSD Percent Recovery:	N/A	
	MS Status vs Numerical Indicator:	N/A	
	MSD Status vs Numerical Indicator:	Pass	
	MS Status vs Recovery:		
	MSD Status vs Recovery: MS/MSD Upper % Recovery Limits:	136%	
	MS/MSD Lower % Recovery Limits: MS/MSD Lower % Recovery Limits:	71%	
	MO/MOD Lower // Receivery Emilia:		

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL?	92686731001DUP 0.492 0.496 0.212 0.415 See Below ##	other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator:	0.848	92686731001
Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	N/A Fail***	92686731001DUP

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	1
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

***Betch must be re-prepped due to unacceptable precision

results < Spring NI & Jacoptable

Quality Control Sample Performance Assessment

Ra-228 Test: ZPC Analyst: 9/20/2023 Date:

Worklist: 75324 WT Matrix:

Method Blank Assessment 2998700 MB Sample ID 0.027 MB concentration: M/B 2 Sigma CSU: 0.296 MB MDC: 0.689 MB Numerical Performance Indicator: 0.18 MB Status vs Numerical Indicator: Pass MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS75324	LCSD75324
Count Date:	9/25/2023	
Spike I.D.:	23-043	
Decay Corrected Spike Concentration (pCi/mL):	39.681	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.816	
Target Conc. (pCi/L, g, F):	4.865	
Uncertainty (Calculated):	0.238	
Result (pCi/L, g, F):	2.855	2-6
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.753	
Numerical Performance Indicator:	-4.99	1/1
Percent Recovery:	58.68%	. —
Status vs Numerical Indicator:	Fail**	
Status vs Recovery:		
Upper % Recovery Limits:		
Lower % Recovery Limits:	60%	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D. Sample Result (pCi/L, g, F):	92686731002DUP 0.265	other than
Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?	0.661 0.404	LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator Duplicate RPD	-1.445	92686731002 92686731002DUF
Duplicate Status vs Numerical Indicator Duplicate Status vs RPD % RPD Limit	Fail***	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	9/6/2023	
Sample I.D.	92686731001	
Sample MS I.D.	92686731001MS	
Sample MSD I.D.		
Spike I.D.:	23-043	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):	39.933	
Spike Volume Used in MS (mL):	0.20	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):	0.804	
MS Target Conc.(pCi/L, g, F):	9.929	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):	0.487	
MSD Spike Uncertainty (calculated):		
Sample Result:	0.148	
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.322	
Sample Matrix Spike Result:	9.107	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.860	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:	-0.974	
MSD Numerical Performance Indicator:		
MS Percent Recovery:	90.24%	
MSD Percent Recovery:		
MS Status vs Numerical Indicator:	l .	
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:	t	
MSD Status vs Recovery:	1	
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:	60%	

rix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Numerical Performance Indicator:		
MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:		
	Sample I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Most Spike Duplicate Result: Most Most Duplicate Result: Most Most Duplicate Status vs Numerical Indicator: Most Most Duplicate Status vs RPD:	Sample I.D. Sample MS I.D.

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

**Batch must be re-prepped due to LCS failure.

VAL 1 09 29 23 9/16/13 10f1

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-228
Analyst:	ZPC
Date:	9/26/2023
Worklist:	75324
Matrix:	

Method Blank Assessment

MB Sample ID MB concentration:

MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
•	LCS75324	LCSD75324
Count Date:	9/28/2023	
Spike I.D.:	23-043	
Decay Corrected Spike Concentration (pCi/mL):	39.642	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.816	}
Target Conc. (pCi/L, g, F):	4.861	
Uncertainty (Calculated):	0.238	1
Result (pCi/L, g, F):	4.668	
	1.056	
Numerical Performance Indicator:	-0.35	
Percent Recovery:	96.04%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:		
Lower % Recovery Limits:	60%	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):		Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	See Below ##	

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Matrix Spike Result:		
Sample Matrix Spike Duplicate Result:		
MS Numerical Performance Indicator:		1
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		į
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:	f	
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:	<u> </u>	L

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	1
Sample MSD I.D.	
Sample Matrix Spike Result:	
Sample Matrix Spike Duplicate Result:	
Duplicate Numerical Performance Indicator:]
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	ļ
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

VAL 9/29/23 10f1

September 25, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 08, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-22-16 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60437138001	MW-37-090723	Water	09/07/23 11:25	09/08/23 15:00
60437138002	MW-38-090723	Water	09/07/23 09:35	09/08/23 15:00
60437138003	MW-39-090723	Water	09/07/23 10:30	09/08/23 15:00
60437138004	MW-40-090723	Water	09/07/23 11:20	09/08/23 15:00
60437138005	MW-K-090723	Water	09/07/23 12:05	09/08/23 15:00
60437138006	MW-L-090723	Water	09/07/23 11:25	09/08/23 15:00
60437138007	LEC IAP-DUP-090723	Water	09/07/23 15:10	09/08/23 15:00

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
0437138001 MV	MW-37-090723	EPA 200.7		3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0437138002	MW-38-090723	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
	EPA 200.8	JGP	3	PASI-K	
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
60437138003 MW-39-0	MW-39-090723	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0437138004	MW-40-090723	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0437138005	MW-K-090723	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0437138006	MW-L-090723	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
60437138007	LEC IAP-DUP-090723	EPA 200.7	JXD	3	PASI-K

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: September 25, 2023

General Information:

7 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 864489

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60437138001,60437141001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3423001)
 - Calcium
- MSD (Lab ID: 3423002)
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: September 25, 2023

General Information:

7 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: September 25, 2023

General Information:

7 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Method: SM 2540C

Description: 2540C Total Dissolved Solids
Client: Evergy Kansas Central, Inc.
Date: September 25, 2023

General Information:

7 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 864473

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 3422919)
 - Total Dissolved Solids

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:September 25, 2023

General Information:

7 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- LEC IAP-DUP-090723 (Lab ID: 60437138007)
- MW-37-090723 (Lab ID: 60437138001)
- MW-38-090723 (Lab ID: 60437138002)
- MW-39-090723 (Lab ID: 60437138003)
- MW-40-090723 (Lab ID: 60437138004)
- MW-K-090723 (Lab ID: 60437138005)
- MW-L-090723 (Lab ID: 60437138006)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Evergy Kansas Central, Inc.
Date: September 25, 2023

General Information:

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 865032

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60437134001,60437138004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3425460)
 - Chloride
 - Fluoride
- MS (Lab ID: 3425462)
 - Chloride
 - Sulfate
- MSD (Lab ID: 3425461)
 - Chloride
 - Fluoride

R1: RPD value was outside control limits.

- MSD (Lab ID: 3425461)
 - Chloride

Additional Comments:

Analyte Comments:

QC Batch: 865032

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 3425460)
 - Chloride

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: MW-37-090723	Lab ID: 604	37138001	Collected: 09/07/2	3 11:25	Received: 09	/08/23 15:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7							
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.077	mg/L	0.0050	1	09/14/23 12:10	09/20/23 15:49	7440-39-3	
Boron, Total Recoverable	1.8	mg/L	0.10	1	09/14/23 12:10	09/20/23 15:49	7440-42-8	
Calcium, Total Recoverable	232	mg/L	0.20	1	09/14/23 12:10	09/20/23 15:49	7440-70-2	M1
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.023	mg/L	0.010	1	09/14/23 12:10	09/20/23 16:48	7439-93-2	
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8							
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.0045	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:31	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:31	7440-48-4	
Molybdenum, Total Recoverable	0.076	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:31	7439-98-7	
2540C Total Dissolved Solids	Analytical Method: SM 2540C							
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1080	mg/L	13.3	1		09/13/23 10:38		
4500H+ pH, Electrometric	Analytical Met	nod: SM 450	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	6.9	Std. Units	0.10	1		09/12/23 15:23		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
	Pace Analytica							
Chloride	56.4	mg/L	20.0	20		09/20/23 18:50	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/20/23 18:37	16984-48-8	
Sulfate	280	mg/L	20.0	20		09/20/23 18:50	14808-79-8	

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: MW-38-090723	Lab ID: 604	37138002	Collected: 09/07/2	23 09:35	Received: 09	0/08/23 15:00 N	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7								
	Pace Analytica	al Services -	Kansas City						
Barium, Total Recoverable	0.049	mg/L	0.0050	1	09/14/23 12:10	09/20/23 15:56	7440-39-3		
Boron, Total Recoverable	4.6	mg/L	0.10	1	09/14/23 12:10	09/20/23 15:56	7440-42-8		
Calcium, Total Recoverable	201	mg/L	0.20	1	09/14/23 12:10	09/20/23 15:56	7440-70-2		
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EP	A 3010				
	Pace Analytica	al Services -	Kansas City						
Lithium, Total Recoverable	0.052	mg/L	0.010	1	09/14/23 12:10	09/20/23 16:54	7439-93-2		
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8								
	Pace Analytica	al Services -	Kansas City						
Arsenic, Total Recoverable	0.026	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:33	7440-38-2		
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:33	7440-48-4		
Molybdenum, Total Recoverable	0.085	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:33	7439-98-7		
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
	Pace Analytica	al Services -	Kansas City						
Total Dissolved Solids	1580	mg/L	20.0	1		09/13/23 10:38			
4500H+ pH, Electrometric	Analytical Met	nod: SM 450	00-H+B						
• ,	Pace Analytica	l Services -	Kansas City						
pH at 25 Degrees C	7.6	Std. Units	0.10	1		09/12/23 15:15		H6	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
	Pace Analytica								
Chloride	111	mg/L	20.0	20		09/20/23 19:44	16887-00-6		
Fluoride	3.7	mg/L	0.20	1		09/20/23 19:30	16984-48-8		
Sulfate	668	mg/L	50.0	50		09/21/23 20:42	14808-79-8		

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: MW-39-090723	Lab ID: 604	37138003	Collected: 09/07/2	3 10:30	Received: 09	/08/23 15:00 N	/latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7								
	Pace Analytica	al Services -	Kansas City						
Barium, Total Recoverable	0.029	mg/L	0.0050	1	09/14/23 12:10	09/20/23 15:58	7440-39-3		
Boron, Total Recoverable	4.6	mg/L	0.10	1	09/14/23 12:10	09/20/23 15:58	7440-42-8		
Calcium, Total Recoverable	547	mg/L	0.20	1	09/14/23 12:10	09/20/23 15:58	7440-70-2		
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010				
	Pace Analytica	al Services -	Kansas City						
Lithium, Total Recoverable	0.037	mg/L	0.010	1	09/14/23 12:10	09/20/23 16:56	7439-93-2		
200.8 MET ICPMS	Analytical Met	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8							
	Pace Analytica	al Services -	Kansas City						
Arsenic, Total Recoverable	0.011	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:41	7440-38-2		
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:41	7440-48-4		
Molybdenum, Total Recoverable	0.18	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:41	7439-98-7		
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
	Pace Analytica	al Services -	Kansas City						
Total Dissolved Solids	3410	mg/L	66.7	1		09/13/23 10:38			
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B						
•	Pace Analytica	al Services -	Kansas City						
pH at 25 Degrees C	7.3	Std. Units	0.10	1		09/12/23 15:18		H6	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
	Pace Analytica								
Chloride	321	mg/L	20.0	20		09/20/23 20:10	16887-00-6		
Fluoride	1.3	mg/L	0.20	1		09/20/23 19:57	16984-48-8		
Sulfate	<1.0	mg/L	1.0	1		09/20/23 19:57	14808-79-8		

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: MW-40-090723	Lab ID: 604	37138004	Collected: 09/07/2	23 11:20	Received: 09	0/08/23 15:00 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7								
	Pace Analytica	al Services -	Kansas City						
Barium, Total Recoverable	0.035	mg/L	0.0050	1	09/14/23 12:10	09/20/23 16:00	7440-39-3		
Boron, Total Recoverable	3.3	mg/L	0.10	1	09/14/23 12:10	09/20/23 16:00	7440-42-8		
Calcium, Total Recoverable	473	mg/L	0.20	1	09/14/23 12:10	09/20/23 16:00	7440-70-2		
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010				
	Pace Analytica	al Services -	Kansas City						
Lithium, Total Recoverable	0.043	mg/L	0.010	1	09/14/23 12:10	09/20/23 16:58	7439-93-2		
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8								
	Pace Analytica	al Services -	Kansas City						
Arsenic, Total Recoverable	0.015	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:43	7440-38-2		
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:43	7440-48-4		
Molybdenum, Total Recoverable	0.059	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:43	7439-98-7		
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
	Pace Analytica	al Services -	Kansas City						
Total Dissolved Solids	2670	mg/L	40.0	1		09/14/23 10:52			
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B						
•	Pace Analytica	al Services -	Kansas City						
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/12/23 15:22		H6	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00						
·	Pace Analytica								
Chloride	13.0	mg/L	1.0	1		09/20/23 20:50	16887-00-6	M1	
Fluoride	<0.20	mg/L	0.20	1		09/20/23 20:50	16984-48-8		
Sulfate	<1.0	mg/L	1.0	1		09/20/23 20:24	14808-79-8	M1	

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: MW-K-090723	Lab ID: 604	37138005	Collected: 09/07/2	23 12:05	Received: 09	/08/23 15:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.048	mg/L	0.0050	1	09/14/23 12:10	09/20/23 16:02	7440-39-3	
Boron, Total Recoverable	1.9	mg/L	0.10	1	09/14/23 12:10	09/20/23 16:02	7440-42-8	
Calcium, Total Recoverable	207	mg/L	0.20	1	09/14/23 12:10	09/20/23 16:02	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.048	mg/L	0.010	1	09/14/23 12:10	09/20/23 17:00	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.083	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:45	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:45	7440-48-4	
Molybdenum, Total Recoverable	0.021	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:45	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1400	mg/L	20.0	1		09/14/23 10:52		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.7	Std. Units	0.10	1		09/12/23 15:30		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
•	Pace Analytica							
Chloride	108	mg/L	20.0	20		09/20/23 21:31	16887-00-6	
Fluoride	2.6	mg/L	0.20	1		09/20/23 21:17	16984-48-8	
Sulfate	444	mg/L	50.0	50		09/21/23 22:02	14808-79-8	

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: MW-L-090723	Lab ID: 604	37138006	Collected: 09/07/2	23 11:25	Received: 09	/08/23 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.035	mg/L	0.0050	1	09/14/23 12:10	09/20/23 16:10	7440-39-3	
Boron, Total Recoverable	2.4	mg/L	0.10	1	09/14/23 12:10	09/20/23 16:10	7440-42-8	
Calcium, Total Recoverable	485	mg/L	0.20	1	09/14/23 12:10	09/20/23 16:10	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.090	mg/L	0.010	1	09/14/23 12:10	09/20/23 17:09	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Me	thod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.027	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:47	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:47	7440-48-4	
Molybdenum, Total Recoverable	0.047	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:47	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	4340	mg/L	100	1		09/14/23 10:52		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
• ,	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/12/23 15:24		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Chloride	762	mg/L	50.0	50		09/21/23 22:15	16887-00-6	
Fluoride	2.5	mg/L	0.20	1		09/20/23 22:11	16984-48-8	
Sulfate	1860	mg/L	200	200		09/21/23 22:27	14808-79-8	

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Sample: LEC IAP-DUP-090723	Lab ID: 604	37138007	Collected: 09/07/2	23 15:10	Received: 09	/08/23 15:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.035	mg/L	0.0050	1	09/14/23 12:10	09/20/23 16:12	7440-39-3	
Boron, Total Recoverable	2.4	mg/L	0.10	1	09/14/23 12:10	09/20/23 16:12	7440-42-8	
Calcium, Total Recoverable	481	mg/L	0.20	1	09/14/23 12:10	09/20/23 16:12	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.086	mg/L	0.010	1	09/14/23 12:10	09/20/23 17:11	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Me	thod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.027	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:49	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:49	7440-48-4	
Molybdenum, Total Recoverable	0.048	mg/L	0.0010	1	09/14/23 12:10	09/19/23 10:49	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	6720	mg/L	100	1		09/14/23 10:53		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
• /	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/12/23 15:57		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica							
Chloride	775	mg/L	50.0	50		09/21/23 22:40	16887-00-6	
Fluoride	2.5	mg/L	0.20	1		09/20/23 22:37		
Sulfate	2430	mg/L	200	200		09/21/23 22:53		

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

LABORATORY CONTROL SAMPLE: 2422000

Date: 09/25/2023 11:02 AM

Pace Project No.: 60437138

QC Batch: 864489 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

METHOD BLANK: 3422999 Matrix: Water

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
				7 (11d1) 20d	
Barium	mg/L	< 0.0050	0.0050	09/20/23 15:45	
Boron	mg/L	<0.10	0.10	09/20/23 15:45	
Calcium	mg/L	< 0.20	0.20	09/20/23 15:45	

LABORATORT CONTROL SAIVIPLI	=. 3423000	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		1.0	101	85-115	
Boron	mg/L	1	0.96	96	85-115	
Calcium	mg/L	10	10.1	101	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3423	001		3423002							
		60437138001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.077	1	1	1.1	1.1	101	100	70-130	1	20	
Boron	mg/L	1.8	1	1	2.8	2.8	101	102	70-130	0	20	
Calcium	mg/L	232	10	10	247	249	147	167	70-130	1	20	M1

MATRIX SPIKE SAMPLE:	3423003						
		60437141001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	77.2 ug/L	1	1.1	102	70-130	
Boron	mg/L	1760 ug/L	1	2.8	101	70-130	
Calcium	mg/L	236	10	248	121	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

QC Batch: 864494 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

METHOD BLANK: 3423008 Matrix: Water

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Arsenic mg/L < 0.0010 0.0010 09/19/23 10:27 Cobalt mg/L < 0.0010 0.0010 09/19/23 10:27 Molybdenum mg/L <0.0010 09/19/23 10:27 0.0010

LABORATORY CONTROL SAMPLE: 3423009

Date: 09/25/2023 11:02 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	0.04	0.039	99	85-115	
Cobalt	mg/L	0.04	0.040	100	85-115	
Molybdenum	mg/L	0.04	0.040	100	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 3423	010		3423011							
			MS	MSD								
	6	60437138002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.026	0.04	0.04	0.068	0.065	104	98	70-130	4	20	
Cobalt	mg/L	< 0.0010	0.04	0.04	0.040	0.038	99	95	70-130	4	20	
Molybdenum	mg/L	0.085	0.04	0.04	0.13	0.12	112	98	70-130	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

QC Batch: 864495 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

METHOD BLANK: 3423020 Matrix: Water

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Lithium
 mg/L
 <0.010</td>
 0.010
 09/20/23 16:44

LABORATORY CONTROL SAMPLE: 3423021

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Lithium 0.99 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3423022 3423023

MS MSD

60437138001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Qual Result Conc. % Rec Limits 0.023 Lithium mg/L 1.1 1.1 103 104 75-125 20

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

QC Batch: 864208 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138001, 60437138002, 60437138003

METHOD BLANK: 3421941 Matrix: Water

Associated Lab Samples: 60437138001, 60437138002, 60437138003

Blank Reporting
Parameter Units Result Limit Analyzed

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/13/23 10:33

LABORATORY CONTROL SAMPLE: 3421942

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 996 100 80-120

SAMPLE DUPLICATE: 3421943

60437056004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1320 **Total Dissolved Solids** mg/L 1370 4 10

SAMPLE DUPLICATE: 3421944

Date: 09/25/2023 11:02 AM

60436986003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 24500 2 10 mg/L 25000

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

QC Batch: 864473 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138004, 60437138005, 60437138006, 60437138007

METHOD BLANK: 3422916 Matrix: Water

Associated Lab Samples: 60437138004, 60437138005, 60437138006, 60437138007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/14/23 10:52

LABORATORY CONTROL SAMPLE: 3422917

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 1000 100 80-120

SAMPLE DUPLICATE: 3422918

60437138004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2670 **Total Dissolved Solids** 5 mg/L 2820 10

SAMPLE DUPLICATE: 3422919

Date: 09/25/2023 11:02 AM

60437117001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 8380 10 D6 mg/L 9340 11

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

QC Batch: 863911 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006

SAMPLE DUPLICATE: 3421007

Date: 09/25/2023 11:02 AM

 Parameter
 Units
 60437056001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 6.9
 7.0
 1
 5 H6

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

QC Batch: 864085 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138007

SAMPLE DUPLICATE: 3421508

Date: 09/25/2023 11:02 AM

 Parameter
 Units
 60437134001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 7.0
 7.1
 1
 5
 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

QC Batch: 865032 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

METHOD BLANK: 3425458 Matrix: Water

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/20/23 13:11	
Fluoride	mg/L	<0.20	0.20	09/20/23 13:11	
Sulfate	mg/L	<1.0	1.0	09/20/23 13:11	

METHOD BLANK: 3429169 Matrix: Water

Associated Lab Samples: 60437138001, 60437138002, 60437138003, 60437138004, 60437138005, 60437138006, 60437138007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/21/23 17:59	
Fluoride	mg/L	<0.20	0.20	09/21/23 17:59	
Sulfate	mg/L	<1.0	1.0	09/21/23 17:59	

LABORATORY CONTROL SAMPLE:	3425459					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.8	95	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

LABORATORY CONTROL SAMPLE:	3429170					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	5	5.0	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3425	460		3425461							
		60437134001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3150	1000	1000	4490	3450	134	30	80-120	26	15	E,M1, R1
Fluoride	mg/L	<0.20	2.5	2.5	1.1	1.1	45	44	80-120	0	15	M1
Sulfate	mg/L	119	100	100	202	202	83	83	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

MATRIX SPIKE SAMPLE:	3425462	_					
		60437138004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	13.0	100	360	347	80-120	M1
Fluoride	mg/L	<0.20	50	50.8	101	80-120	
Sulfate	mg/L	<1.0	100	<20.0	0	80-120	M1

QUALIFIERS

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/25/2023 11:02 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH POND

Pace Project No.: 60437138

Date: 09/25/2023 11:02 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60437138001	MW-37-090723	EPA 200.7	864489	EPA 200.7	864582
0437138002	MW-38-090723	EPA 200.7	864489	EPA 200.7	864582
0437138003	MW-39-090723	EPA 200.7	864489	EPA 200.7	864582
0437138004	MW-40-090723	EPA 200.7	864489	EPA 200.7	864582
0437138005	MW-K-090723	EPA 200.7	864489	EPA 200.7	864582
60437138006	MW-L-090723	EPA 200.7	864489	EPA 200.7	864582
60437138007	LEC IAP-DUP-090723	EPA 200.7	864489	EPA 200.7	864582
0437138001	MW-37-090723	EPA 3010	864495	EPA 6010	864583
0437138002	MW-38-090723	EPA 3010	864495	EPA 6010	864583
0437138003	MW-39-090723	EPA 3010	864495	EPA 6010	864583
0437138004	MW-40-090723	EPA 3010	864495	EPA 6010	864583
0437138005	MW-K-090723	EPA 3010	864495	EPA 6010	864583
0437138006	MW-L-090723	EPA 3010	864495	EPA 6010	864583
0437138007	LEC IAP-DUP-090723	EPA 3010	864495	EPA 6010	864583
0437138001	MW-37-090723	EPA 200.8	864494	EPA 200.8	864584
60437138002	MW-38-090723	EPA 200.8	864494	EPA 200.8	864584
60437138003	MW-39-090723	EPA 200.8	864494	EPA 200.8	864584
0437138004	MW-40-090723	EPA 200.8	864494	EPA 200.8	864584
0437138005	MW-K-090723	EPA 200.8	864494	EPA 200.8	864584
0437138006	MW-L-090723	EPA 200.8	864494	EPA 200.8	864584
0437138007	LEC IAP-DUP-090723	EPA 200.8	864494	EPA 200.8	864584
60437138001	MW-37-090723	SM 2540C	864208		
60437138002	MW-38-090723	SM 2540C	864208		
60437138003	MW-39-090723	SM 2540C	864208		
60437138004	MW-40-090723	SM 2540C	864473		
0437138005	MW-K-090723	SM 2540C	864473		
0437138006	MW-L-090723	SM 2540C	864473		
60437138007	LEC IAP-DUP-090723	SM 2540C	864473		
0437138001	MW-37-090723	SM 4500-H+B	863911		
0437138002	MW-38-090723	SM 4500-H+B	863911		
0437138003	MW-39-090723	SM 4500-H+B	863911		
60437138004	MW-40-090723	SM 4500-H+B	863911		
60437138005	MW-K-090723	SM 4500-H+B	863911		
60437138006	MW-L-090723	SM 4500-H+B	863911		
60437138007	LEC IAP-DUP-090723	SM 4500-H+B	864085		
0437138001	MW-37-090723	EPA 300.0	865032		
0437138002	MW-38-090723	EPA 300.0	865032		
0437138003	MW-39-090723	EPA 300.0	865032		
0437138004	MW-40-090723	EPA 300.0	865032		
0437138005	MW-K-090723	EPA 300.0	865032		
0437138006	MW-L-090723	EPA 300.0	865032		
60437138007	LEC IAP-DUP-090723	EPA 300.0	865032		

Pace

DC#_Title: ENV-FRM-LENE-0009_San

	ANALYTICAL SERVICES	Revision: 2	Effective Da	ate: 0	1/12/2	022	Idanon	_,			
Client Nan	ne: Ei	<i>jersy</i>	L								Ŀ
Courier:	FedEx UPS	□ VIA □ Clay □	PEX 🗆	EC		Pace	- □ Xı	oads □	Client 💢	Other □	
Tracking #:			Pace Shipp	ing La	bel Use	d? Y	es 😿	No □	·		
Custody Sea	il on Cooler/Box F	Present: Yes 🗫 No	□ Seals	intac	t: Yes	a N	o 🗆				
Packing Mate		Wrap Bubble B	Bags 🗶	Fo	oam □	١	None □	Oth	ner 🗆		
Thermomete			/pe of Ice: 🐧				.		Date and i	initials of per	
Cooler Temp	erature (°C): A	s-read 3 · + Corr.	Factor 0.	<u> </u>	Correc	ted	5.4			contents:	
Temperature sh	nould be above freez	ing to 6°C				1				VF 9/9	
Chain of Cust	tody present:		X ∕Yes	□No	□N/A						
Chain of Cust	ody relinquished:		Yes	□No	□N/A						
Samples arriv	ed within holding t	ime:	₹Yes	□No	□N/A						
Short Hold Ti	ime analyses (<7	2hr):	□Yes	Ì X No	□N/A						
Rush Turn A	round Time reque	ested:	□Yes	₩No	□n/a						
Sufficient volu	ıme:		⊠ Yes	□No	□n/a						
Correct contai	iners used:		Y ØYes	□No	□n/a						
Pace containe	ers used:		Yes	□No	□n/a						
Containers int	act:		Spanes	□No	□n/a						
Unpreserved 5	5035A / TX1005/10	006 soils frozen in 48hrs	? □Yes	□No	∑ N/A						
Filtered volum	ne received for diss	solved tests?	□Yes	□No	SAN/A						
Sample labels	match COC: Date	e / time / ID / analyses	YO Yes	□No	□n/a						
Samples conta	ain multiple phase:	s? Matrix: W	□Yes	⊠ R₀	□n/a						
Containers red	quiring pH preserv	ation in compliance?	Yes	□No	□N/A				es, lot #'s of	preservative	e and the
	HCl<2; NaOH>9 Sulf DA, Micro, O&G, KS	fide, NaOH>10 Cyanide)	LOT#:6718	የት		date/t	ime adde	ea.			
	r sample checks:	TFH, OK-DKO)	LOI#. W /								
Lead acetate s	strip turns dark? (F	Record only)	□Yes	□No							
Potassium iod	lide test strip turns	blue/purple? (Preserve)	□Yes	□No							
Trip Blank pres	sent:		□Yes	□No	D AN/A						
Headspace in	VOA vials (>6mm):	□Yes	□No	DERN/A						
Samples from	USDA Regulated	Area: State:	□Yes	□No	№ N/A						(17
Additional labe	els attached to 503	5A / TX1005 vials in the		□No	⊅ N/A						
Client Notifica	ation/ Resolution:	: Copy C	COC to Client?	Υ	/ [®] N	F	ield Data	Required?	P Y / N	1	
Person Contac	-	D	ate/Time:								
Comments/ Re	esolution:										

Date:

Project Manager Review:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

		_																								1	_					
Section Required	A I Client Information:	Section B Required P		inform	nation:						ion C	; ormatio	n.														P	age:	1	of	1	
Company		Report To:								Atten				nts F	aya	ble				_	٦						_					
Address:	400 E Van Buren St	Copy To:	Laura	a Hin	es. Sama	antha Ka	nev		-	Comp	oany N	lame:	ΕV	ERG	ΥK	ANS	SAS	CEN	TRA	L, IN	de	EGL	ΙΔΤ	ORY	AGE	NCY	,	_				
_	Suite 545 Phoenix, AZ 85004									Addre				SECT							-	_	PDE		_			WATE	D F	DRINKING	CIMATE	D
Email To:		Purchase O	rder N	0 :	10JEC-0	0000477	'47		_	Pace											-[/4// 1	[-II		3 WAIE	.г.
									_	Refere		Α.Ι	(مالنم	- 0	40 E	C2 1	402			\perp		ST	_	R	CRA		- 6	,	OTHER		
		Project Nam		LEC	inactive i	ASTI PON	a 			Manag	ger:	- "		Spille	er, 9	13-5	03-1	403			վ ։	Site L	.ocat	ion		KS	;					
Requesto	ed Due Date/TAT:	Project Nurr	nber.						L.	Pace	Profile	#: 96	557,	9							L		STA	TE:	. 5			- 1				
									_								L	R	equ	este	d An	alys	is Fi	Itere	d (Y/	N)	_					
	Section D Valid Matrix C Required Client Information MATRIX	CODE	codes to left)	C=COMP)		COLL	ECTED				L.	Pr	eser	vativ	es		A/ N	N	N	N I	1 N	N										
	WATER	DW WT WW P SL OL WP AR OT TS	(see valid	(G=GRAB	COMPC STAR		COMPOS END/GR	alTE AB	TEMP AT COLLECTION	CONTAINERS	pa/						is Test	Ba,Ca	Co,Mo	ium	Spilos panio	:		ï				Chlorine (Y/N)				
ITEM #			MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TE	# OF CON	Unpreserved	H ₂ SO ₄	모	나는 10	Na ₂ S ₂ O ₃	Other	↓ Analysis Test	200.7 B,B	200.8 As,	6010 Lithium	300 O CI E S	E E						Residual	Pace	Project N	io./ Lab	I.D.
1	MW-37-090723		WT	G	NA	NA	9/7/23	11:25	29	4	3	1	1	Ц	4			х	х	X	x >	(X	-	\sqcup	+	+		\vdash				
2	MW-38-090723		WT	G	NA	NA	09/07/23	9:35	(24	4	3	1	_	Ш	4			х	х	X .	x >	(x	_	Ш	_	\perp		\sqcup				
3	MW-39-090723		WT	G	NA	NA	09/07/23	10:30		4	3	1	1		4	4	1	Х	х	х	x >	(X	_	Ш	_	\perp	_	Н				
4	MW-40-090723		WT	G	NA	NA	09/07/23	11:20		4	3	_ 1		Ц	_	1	1	х	х	X	x >	(x	1_	Ш	1			Н	*1			
5	MW-K-090723		WT.	G	NA	NA .	09/07/23	12:05	120	4	3	1	_	Ц	_	1	1	X.	х	X	x >	(X	-	Н	4	1	_	Н			-	
6	MW-L-090723		WT	G	NA	NA	09/07/23	11:25	-	4	3	1	┺	Ш	4		1	х	X	x	x >	(x		Ш	4		_	Н				
7	LEC IAP-DUP-090723		WT	G	NA	NA	09/07/23	15:10		4	3	1	\perp	Ц		1	1	х	X	x	x >	(X	<u> </u>	Н	_	\perp	1	Н				
8									_	<u> </u>	\perp	_	↓	Ш	4	4	1		_	4	_	1	ļ_	\square	\perp		_	Н				
9				_					_	<u> </u>	11	_	┺	Н	4	4	1	Ш	_	4	_	-	-	Ш	_	1	-	Н				
10													\perp	Ц		1	1			4			_	Щ	_	1	-	\vdash				
_11				_					_	_	1	_	_	Н	_	4	4	L		+	_	1	₩	Ш	+	-	-	Н				
12									1_	┡		_	_	Ш			1_			_	_	+	_	Н			╁	ш				
	ADDITIONAL COMMENTS		RELI	NQUIS	SHED BY /	AFFILIAT	ION	DATE			TIME	_					D BY			TION		-	DAT		TII		1	1	SAME	PLE CONDIT	TONS	
				Jasor	R. Frank	s / SCS		9/8/2	3		15:00				51	91	P	a	ā			9	8	V	150	0	13.	4	<u>r</u>	Y	<u> </u>	
										\top		$\neg \uparrow$										T										
			_							\vdash		+																\dashv				
Рас						SAMPL	ER NAME A	ND SIGN/	ATUF	RE.																	1	္		oler	†act	á
e S							PRINT Nam	e of SAMP	LER	nes.	9-P2	J	As	ON	R		FR	w	Se o	59							12	Temp in °C	Received on Ice (Y/N)	ustod) yd Co	اما	ξ.
Page 31 of 32							SIGNATUR				2	_	P		-	_	1	D/	ATE S	Signe D/YY)			ç	9/8/2	3			Ter	Rece	Custody Sealed Cooler (Y/N)	Samo	(N/V)

Client:		Eversy		Profile #	9657 live 9
Site:	LEC	Inactice Ash	Pond	Notes	

COC Line Item	Matrix	H65/	реэн	DG9G	VG9U	DG9N	DG9M	DG9B	BG1U	АG1Н	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	BP3F	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
_1																			1		2		1								
2																			1		1		4								
3																			\top				7								
4																							\exists								
5																															
6																															
7											_								1		1		7								
8																															
9																															
10																															
11																															
12																						<u> </u>									

Container Codes

		Glass			Plastic	Misc.				
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab			
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate			
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag			
OG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter			
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes			
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit			
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can			
√G9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic					
VG9T	40mL Na Thio, clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic					
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		88-4-5			
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix			
3G1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water			
3G3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid			
3G3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid			
NGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL			
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe			
			***************************************	BP4U	125mL unpreserved plastic	DW	Drinking Water			
				BP4N	125mL HNO3 plastic		•			
				BP4S	125mL H2SO4 plastic					
				WPDU	16oz unpresserved plstic	7				

Work Order Number:

(00437138

ATTACHMENT 2-2

December 2023 Annual Assessment Sampling Event

Laboratory Analytical Report

January 02, 2024

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on December 11, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

REVISED to include QC Sheets in final report package. No data was changed.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com (913)599-5665

Alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60443805001	MW-37-121123	Water	12/11/23 10:25	12/11/23 16:45
60443805002	MW-38-121123	Water	12/11/23 11:15	12/11/23 16:45
60443805003	MW-39-121123	Water	12/11/23 13:05	12/11/23 16:45
60443805004	MW-40-121123	Water	12/11/23 13:45	12/11/23 16:45
60443805005	MW-K-121123	Water	12/11/23 11:50	12/11/23 16:45
60443805006	MW-L-121123	Water	12/11/23 12:35	12/11/23 16:45
60443805007	LEC IAP-DUP-121123	Water	12/11/23 11:50	12/11/23 16:45

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60443805001	1 MW-37-121123 EPA 903.1		 LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443805002	MW-38-121123	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443805003	MW-39-121123	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443805004	MW-40-121123	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443805005	MW-K-121123	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443805006	MW-L-121123	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443805007	LEC IAP-DUP-121123	EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: January 02, 2024

General Information:

7 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: January 02, 2024

General Information:

7 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.

Date: January 02, 2024

General Information:

7 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: MW-37-121123 PWS:	Lab ID: 60443 Site ID:	3805001 Collected: 12/11/23 10:25 Sample Type:	Received:	12/11/23 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 903.1	-0.135 ± 0.593 (1.23) C:NA T:86%	pCi/L	12/28/23 12:43	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.884 ± 0.411 (0.680) C:86% T:78%	pCi/L	12/28/23 12:31	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.884 ± 1.00 (1.91)	pCi/L	12/29/23 10:12	2 7440-14-4	

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: MW-38-121123 PWS:	Lab ID: 6044 Site ID:	3805002 Collected: 12/11/23 11:15 Sample Type:	Received:	12/11/23 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.466 ± 0.778 (1.35) C:NA T:80%	pCi/L	12/28/23 12:43	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.843 ± 0.387 (0.642) C:86% T:83%	pCi/L	12/28/23 12:31	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.31 ± 1.17 (1.99)	pCi/L	12/29/23 10:12	2 7440-14-4	

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: MW-39-121123 PWS:	Lab ID: 6044 Site ID:	3805003 Collected: 12/11/23 13:05 Sample Type:	Received:	12/11/23 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	-0.0701 ± 0.567 (1.17) C:NA T:90%	pCi/L	12/28/23 12:43	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.18 ± 0.437 (0.618) C:82% T:81%	pCi/L	12/28/23 12:3	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.18 ± 1.00 (1.79)	pCi/L	12/29/23 10:12	2 7440-14-4	

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: MW-40-121123 PWS:	Lab ID: 604438 Site ID:	05004 Collected: 12/11/23 13:45 Sample Type:	Received:	12/11/23 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 903.1	0.651 ± 0.603 (0.918) C:NA T:90%	pCi/L	12/28/23 12:43	3 13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 904.0	0.964 ± 0.409 (0.646) C:83% T:81%	pCi/L	12/28/23 12:3	1 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.62 ± 1.01 (1.56)	pCi/L	12/29/23 10:12	2 7440-14-4	

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: MW-K-121123 PWS:	Lab ID: 6044380 9 Site ID:	Collected: 12/11/23 11:50 Sample Type:	Received:	12/11/23 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg			_	
Radium-226	EPA 903.1	0.272 ± 0.462 (0.815) C:NA T:85%	pCi/L	12/28/23 12:43	13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 904.0	0.990 ± 0.423 (0.678) C:86% T:79%	pCi/L	12/28/23 12:31	15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.26 ± 0.885 (1.49)	pCi/L	12/29/23 10:12	2 7440-14-4	

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: MW-L-121123 PWS:	Lab ID: 6044380 Site ID:	5006 Collected: 12/11/23 12:35 Sample Type:	Received:	12/11/23 16:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 903.1	-0.205 ± 0.312 (0.820) C:NA T:95%	pCi/L	12/28/23 12:56	3 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 904.0	1.73 ± 0.523 (0.631) C:87% T:84%	pCi/L	12/28/23 12:31	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.73 ± 0.835 (1.45)	pCi/L	12/29/23 10:12	2 7440-14-4	

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Sample: LEC IAP-DUP-121123 PWS:	Lab ID: 604438 Site ID:	305007 Collected: 12/11/23 11:50 Sample Type:	Received:	12/11/23 16:45 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.326 (0.525) C:NA T:86%	pCi/L	12/28/23 12:56	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.864 ± 0.416 (0.707) C:84% T:81%	pCi/L	12/28/23 12:31	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.864 ± 0.742 (1.23)	pCi/L	12/29/23 10:12	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

QC Batch: 637317 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60443805001, 60443805002, 60443805003, 60443805004, 60443805005, 60443805006, 60443805007

METHOD BLANK: 3108410 Matrix: Water

Associated Lab Samples: 60443805001, 60443805002, 60443805003, 60443805004, 60443805005, 60443805006, 60443805007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.152 ± 0.233 (0.374) C:NA T:91%
 pCi/L
 12/28/23 12:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

QC Batch: 637318 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60443805001, 60443805002, 60443805003, 60443805004, 60443805005, 60443805006, 60443805007

METHOD BLANK: 3108411 Matrix: Water

Associated Lab Samples: 60443805001, 60443805002, 60443805003, 60443805004, 60443805005, 60443805006, 60443805007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.509 ± 0.311 (0.570) C:86% T:88%
 pCi/L
 12/28/23 12:30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 01/02/2024 01:43 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH POND CCR-Revised Report

Pace Project No.: 60443805

Date: 01/02/2024 01:43 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60443805001	MW-37-121123	EPA 903.1	637317	_	
60443805002	MW-38-121123	EPA 903.1	637317		
60443805003	MW-39-121123	EPA 903.1			
60443805004	MW-40-121123	EPA 903.1	637317		
60443805005	MW-K-121123	EPA 903.1	637317		
60443805006	MW-L-121123	EPA 903.1	637317		
60443805007	LEC IAP-DUP-121123	EPA 903.1	637317		
60443805001	MW-37-121123	EPA 904.0	637318		
60443805002	MW-38-121123	EPA 904.0	637318		
60443805003	MW-39-121123	EPA 904.0	637318		
60443805004	MW-40-121123	EPA 904.0	637318		
60443805005	MW-K-121123	EPA 904.0	637318		
60443805006	MW-L-121123	EPA 904.0	637318		
60443805007	LEC IAP-DUP-121123	EPA 904.0	637318		
60443805001	MW-37-121123	Total Radium Calculation	639214		
60443805002	MW-38-121123	Total Radium Calculation	639214		
60443805003	MW-39-121123	Total Radium Calculation	639214		
60443805004	MW-40-121123	Total Radium Calculation	639214		
60443805005	MW-K-121123	Total Radium Calculation	639214		
60443805006	MW-L-121123	Total Radium Calculation	639214		
60443805007	LEC IAP-DUP-121123	Total Radium Calculation	639214		

Pace

DC#_Title: ENV-FRM-LENE-0009_San

Revision: 2 Effective Date: 01/12/2022 Issued by Leneau

Client Name: FUELDY KONSUS CENTRA IS-	LINC	
	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☑ Other ☐
Tracking #: Pace	Shipping Label Use	d? Yes 🗹 No □
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	
Packing Material: Bubble Wrap □ Bubble Bags □	l Foam □	None □ Other ☑ 2PLC
Thermometer Used: Type of	Ice: (Ver Blue No	ne
Cooler Temperature (°C): As-read 27 Corr. Factor	or_ -0-3 Correc	ted 2-4 Date and initials of person 2/ 3/2
Temperature should be above freezing to 6°C 2~5		2-2
Chain of Custody present:	ØYes □No □N/A	
Chain of Custody relinquished:	☑Yes □No □N/A	
Samples arrived within holding time:	MZYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ™ No □N/A	
Rush Turn Around Time requested:	□Yes ☑No □N/A	
Sufficient volume:	TØYes □No □N/A	
Correct containers used::	e of the state of	
Pace containers used:	Yes □No □N/A	
Containers intact:	¥ZYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □ Λ/A	
Filtered volume received for dissolved tests?	□Yes □No ☑N/A	
Sample labels match COC: Date / time / ID / analyses	≝Yes □No □N/A	
Samples contain multiple phases? Matrix:	□Yes ☑No □N/A	
Containers requiring pH preservation in compliance?	Yes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#:	(2)[2]	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:	0101	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □VA/A	
Headspace in VOA vials (>6mm):	□Yes □No 12/ N/A	
Samples from USDA Regulated Area: State:	□Yes □No Ç N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No ☑N/A	
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/Tii		<u>'</u>
Comments/ Resolution:		
Project Manager Review:	Date	o:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	Δ.	Cootio- D																						_				
	Client Information:	Section B Required Proje	ect Info	rmation:					Section C Invoice Information:										Page: of									
Company	EVERGY KANSAS CENTRAL, INC.	Report To: Ja	ke Hı	ımphrey					Atten				ts Pa	yable)	_			\neg					: -				
Address	400 E. Van Buren St	Copy To: La	ura H	ines, San	nantha Ka	aney, Meli	ssa Mich	els	Company Name: EVERGY KANSAS CENTRAL, INCREGULATORY AGEN										SENC	Y								
	Suite 545 Phoenix, AZ 85004			Address:							Address: OFF OFOTION A								UND WATER									
Email To	skaney@haleyaldrich.com	Purchase Orde	r No.:	10JEC-0	C-0000047747 Pace Quote									RCRA		***	-	OTHER	WAILK									
Phone:	507-251-2232 Fax:	Project Name:	LE	C Inactive	Ash Por	nd CCR		-		Project	Alio	e Sr	iller	913-	563-	1403	3		_	- 00		_	KUK	1	E		UIHER	
Request	ed Due Date/TAT:	Project Numbe							Mana	ger. Profile #						1400			վ՝	ite Lo		1	K	s				
									ļ		900	57, 9			_			11	ᆜ		TATE	_			_ [
	Section D Valid Matrix C	. 1	T	T				_	_	_					╁		Requ	ueste	ed An	alysis	Filte	ered (Y/N)	_				
	Section D Valid Matrix C Required Client Information MATRIX	CODE 0	C=COMP)		COLL	ECTED					Pre	serva	itives	8	N/X													
	WATER	WT S	Ö					1 ≥		\Box	\Box		Т	П	\top	ঠ	T	П			<u>u</u>		\neg	Т		mmum		
	PRODUCT	CODE CODE CODE CODE CODE CODE CODE CODE	AB S	COMP STA		COMPO END/GR	SITE RAB	COLLECTION						П	1	[3		Ш		11	티				Įξĺ			
	SAMPLE ID SOIL/SOLID OIL WIPE	SL OL WP	(G=GRAB		93			딩	ပ္ထ					Ш	I≢	8	E	Н		Ш.	/228+co Sheets							Λ.
	I AIR	AD						₽¥	冒					Ш	Test	Ba	S,	ا ـ ا	≥ €		S 55				Į. Į	6-4	4380	,5
	Sample IDs MUST BE UNIQUE TISSUE	TS O	TYPE					E E	Į₹	8				ایا	9	: ≼	Σ̈́	[류]	P S		S 58	}			[등			
# 5		Ι×̈́	<u> </u>					Ē	8	lese (4 [ြင့်	g ,	<u> </u>) is	틶	[훈	Ž 🗖	1 1	<u> </u>				lal l			
HE		MATRIX CODE	SAMPLE.	DATE	TIME	DATE	TIME	SAMPLE TEMP AT	# OF CONTAINERS	E 2	HNO ₃	되물	Na ₂ S ₂ O ₃	Metha	LAnalysis	200.8 Sb.As.	Cr,Co,Pb,Mo,Se,Tl	6010 Lithium	245.1 Mercury 300.0 Fluoride		Radium 226/228+combine Radium OC Sheets				Residual Chlorine (Y/N)	Door	Decidet N	o./ Lab I.D.
1	MW-37-121123	w	1			12/11/23	10:25		2	\vdash	2	7	\top	H	+	18	Ŭ		CQ Tes	-	X X	\neg	+	+		1 acc	Tiojectiv	o.r Lab I.D.
2	MW-38-121123	w	г			12/11/23	11:15	T	2	\Box	2			\Box	1	\vdash	П	П	\top		x x	$\overline{}$			H			
3	MW-39-121123	w	П			12/11/23	13:05		2	$\dagger \dagger$	2	T	T	П	1	\vdash	П	П	┰	_	x x	-		T	H			
4	MW-40-121123	w	г			12/11/23	13:45		2	Ħ	2	Ħ		П	1	\vdash	П	П	十	-	x x	_			H			
5	MW-K-121123	w	r			12/11/23	11:50		2		2				1	Г	П	П		П	хX			T	Ħ			
6	MW-L-121123	w	r I			12/11/23	12:35		2	П	2	T	Τ	П	7	Г		П	T	П	хх				П			
7	LEC IAP-DUP-121123	w	П			12/11/23	11:50		2	П	2			П	1	Г		П	\neg	П	хX				Πİ			
8										П					1										Πİ			
9										П						Г		П		\Box				Т	П			
10										П				П											П			
11																		П				П			П			
12										П					1	\Box				П								
	ADDITIONAL COMMENTS	RE	LINQU	ISHED BY /	AFFILIAT	ION	DATE		י	TIME			AC	CEPTI	ED BY	Y / AF	FILIA	TION		D.	ATE	1	IME	Т		SAME	LE CONDITI	ONS
			Matt	VanderPut	ten SCS		12/11/	23	1	6:00			-		otan	_	\leq			12	111	16	19	7.	4	4	4	Y
																				1		100	//				1	
											+											1		+	\dashv			
		_	_								+									-		+		+	-			
					r			_																-	_			
Page 20 of 25						R NAME A																		۽ ا	ا د	o p (N	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
e 20						PRINT Nam	e of SAMP	LER:	Matt	t Vano	derPu	tten	2	17		T e									o, ui dwe i	Received on Ice (Y/N)	Custo Ted C	bles (Y/N)
of Of						SIGNATURI	E of SAMP	LER:	146	K	10	d	200	10	~			Signe D/YY			12/1	1/23			0	Re	Seal	Sam
25																												

Client:	Evergy	Kansas	Centra 1	Inc
				, , , , , , , , , , , , , , , , , , , ,

Profile # 965) 7

Site: LEC Inactive Ash Pond (CR

Notes

COC Line Item	Matrix	VG9H	реэн	DG9O	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗГ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	WI																					2									
2																															
3																															
4																						-									_
5																													_		
6																															
7	4																					1									
8																															
9																															
10																															
11	ei .																														
12																															

Container Codes

		Glass			Plastic		Misc.			
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	T I	Wipe/Swab			
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate			
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag			
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter			
OG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	c	Air Cassettes			
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit			
OG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	lu	Summa Can			
/G9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		*			
/G9T	40mL Na Thio, clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic					
/G9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix			
			-				MATELY			

BP3C

WPDU

250mL NaOH plastic

16oz unpresserved plstic

BG1S 1liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BG1U 1liter unpres glass AG3S 250mL H2SO4 amber glass BG3H 250mL HCL Clear glass AG2U 500mL unpres amber glass BG3U 250mL Unpres Clear glass AG3U 250mL unpres amber glass WGDU 16oz clear soil jar AG4U 125mL unpres amber glass AG5U

BP3F WT Water 250mL HNO3 plastic - field filtered BP3N 250mL HNO3 plastic SL Solid BP3U NAL Non-aqueous Liquid 250mL unpreserved plastic BP3S OL OIL 250mL H2SO4 plastic WP BP3Z 250mL NaOH, Zn Acetate Wipe BP4U 125mL unpreserved plastic DW Drinking Water BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic

Work Order Number:

60443805

100mL unpres amber glass

Matrix

Int	terna	ıl Transfer Ch	nain d	of Custo	ly —								*		····)
		: 60443805 Work	order N	Sample	lultiplier) s Pre-Logged IACTIVE ASH	into eCO			Ce	rt.	Of C Need	ded	: [X		12/1] N	_	Res	esilta	s Re	anie.	sted E	1 /2	1/2024
	ort To			Subcontra						****				Dui			eque				, , , , ,	que	Jica L	<u>'y- 1/1</u>	1/2024
Pac 960 Len	8 Loiret f exa, KS			1638 Suite Gree	Analytical Pittsb Roseytown Roa s 2,3, & 4 nsburg, PA 1560 e (724)850-5600	d 01		Iracai	ved (Cont	ainer	Ų.	226/228 combined + QC	Radium 226	Radium 228			WARDOWN STATEMENT AND AND ADMINISTRATION OF THE PROPERTY OF TH							
Item	Sample	IID	Sample Type	Collect Date/Time	Lab ID	Matrix	HN03	1656	ved	John	amer	5	Radium 2.											LAB U	ISE ONLY
1	MW-37-12	1123	PS	12/11/2023 10:25	60443805001	Water	2			•			Х	Х	Х		1	十			\top	1		00	
2	MW-38-12	1123	PS	12/11/2023 11:15	60443805002	Water	2						Х	Х	Х		T	十	1	T	1	T		02)
3	MW-39-12	1123	PS	12/11/2023 13:05	60443805003	Water	2						Х	Х	Х						\neg	\Box		W3) >
4	MW-40-12	1123	PS.	12/11/2023 13:45	60443805004	Water	2						Х	Х	Х			T				\Box	\top	۵۷	
5	MW-K-12	1123	PS	12/11/2023 11:50	60443805005	Water	2						Χ	Х	Х									005	
6	MW-L-121	123	PS	12/11/2023 12:35	60443805006	Water	2						Х	Х	Х									006	,
7	LEC IAP-I	DUP-121123	PS	12/11/2023 11:50	60443805007	Water	2						Х	Х	Х			-						05	7
T		D-1 # D		1-, -							l			┢						Co	mme	nts			······
1 2 3	sfers	Released By		Date/Time	Received B		fС	w	1		Date.			# \$0	KS sa	ımple	locati	on: 6	i0-R2	8-NA	TIO				
	ler Ten	perature on Receipt		°C Cu	stody Seal Y	or/N	\	Т	R	ece	ived	lor	Ice		Or	(N)		T	•	Sa	mnl	را ءم	ntact /	Ŷ∖or	N
		o maintain client confid						ler's	•									ded	on:						11

WO#:30647688

^{**}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.
This chain of custody is considered complete as is since this information is available in the owner laboratory.

	DC#_Title: ENV-FRM-0	BUR	-008	8 v06	_Sample Conditi	ion Upon Receipt-
\sim	Pittsburgh				IIA# :	30647688
/Pace	Effective Date: 09/20/2023				<u>MU# ·</u>	30041000
ANALYTICAL SERVICES					PM: MAR	Due Date: 01/08/24
Client Name:	Pace-165				CLIENT:	PACE_60_LEKS
Courier: Fed	Ex UUPS UUSPS UClient [] C omi	nercia	ıl 🗆 Pa	ace 🛘 Otner	initial / Date
Tracking Number	er: 6432 (396 C	185	<u> </u>			Examined By: <u>P5 12 17 123</u>
	Cooler/Box Present: 🔲 Ye	s divo			ntact: Yes Cabeled By: 25 12 1 (8 23 Temped By:	
Cooler Tempera	ture: Observed Temp		·C	Corre	ction Factor:	•C Final Temp:•C
Temp should be abo	ove freezing to 6°C			!		
		T			pH paper Lot#	D.P.D. Residual Chlorine Lot#
Comments:		Yes	No	NA	1000134	
Chain of Custod					1.	
Chain of Custod	•				2.	
	t corrections present on COC					
Chain of Custod	· · · · · · · · · · · · · · · · · · ·				3.	
	& Signature on COC:			<u> </u>	<u>4.</u> 5.	
Sample Labels n		Variable .	.	<u> </u>	٥,	
-Includes da	ite/ume/ib					
Matrix:		W	1	т—		
	within Hold Time:				6.	
	Analysis (<72hr				7.	
remaining):	Ti Bannactad				8.	4
	nd Time Requested:			1	9.	
Sufficient Volum Correct Contain		-		 	10.	
-Pace Contain					20,	
Containers Intag					11.	
Orthophosphate					12.	
	samples field filtered:				13.	
	s checked for dechlorination				14:	
Y	received for dissolved tests:				1 5:	
	hecked for preservation:				16.	
exceptions:	VOA, coliform, TOC, O&G,				PHCD	
	ladon, non-aqueous matrix				PMCO	WATER AND AND AND AND AND AND AND AND AND AND
All containers m	neet method preservation		-		Initial when $ ho 4$	Date/Time of
requiremen				L	completed	Preservation
•					Preservative	
8260C/D: Heads	pace in VOA Vials (> 6mm)			/	17.	
624.1: Headspa	ce in VOA Vials (0mm)			_	18.	
Trip Blank Prese	nt:				Trip blank custo	dy seal present? YES or NO
Rad Samples Sc	reened <.05 mrem/hr.				Initial when E5	Date: Survey Meter SN: 280(4380
Comments:						

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. **PM Review** is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Ra-226 Test: Analyst: LL1 Date: 12/21/2023

Batch ID: 76935 DW Matrix:

Method Blank Assessment MB Sample ID 3108410 0.152 MB concentration: M/B Counting Uncertainty: 0.223 MB MDC: 0.374 1.34 MB Numerical Performance Indicator: N/A MB Status vs Numerical Indicator: MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS76935	LCSD76935
Count Date:	12/28/2023	12/28/2023
Spike I.D.:	23-013	23-013
Spike Concentration (pCi/mL):	32.278	32.278
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.651	0.653
Target Conc. (pCi/L, g, F):	4.958	4.946
Uncertainty (Calculated):	0.233	0.232
Result (pCi/L, g, F):	3.965	5.610
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.951	1.181
Numerical Performance Indicator:	-1.99	1.08
Percent Recovery:	79.96%	113.42%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	133%	133%
Lower % Recovery Limits:	73%	73%

LCSD76935 3.965 0.951 5.610 1.181 NO -2.127 34.61% N/A Fail***	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
	LCSD76935 3.965 0.951 5.610 1.181 NO -2.127 34.61% N/A

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS i.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
, ,		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
	l .	
	l	
	l	
•		
	1	
	E .	
•	i .	
•	1	
• • • • • • • • • • • • • • • • • • • •	•	
	Sample Collection Date: Sample I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Spike I.D.: Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL): Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc. (pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): MSD Spike Uncertainty (calculated): Sample Result: Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: x Spike Duplicate Result: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Status vs Numerical Indicator: MSD Status vs Numerical Indicator: MSD Status vs Recovery: imits:	Sample Collection Date: Sample I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Spike I.D.: Spike I.D.: Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL): Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result: Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: x Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery:

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

ecision is not applicable if either the sample of the samp

***Batch must be re-prepped due to unacceptable precision.

Quality Control Sample Performance Assessment

60%

Ra-228 Test:

VAL Analyst: 12/26/2023 Date: 76936 Worklist: WT Matrix:

Method Blank Assessment

3108411 MB Sample ID MB concentration: 0.509 M/B 2 Sigma CSU: 0.311 MB MDC: 0.570 MB Numerical Performance Indicator: 3.21 Fail* MB Status vs Numerical Indicator: MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
·	LCS76936	LCSD76936
Count Date:	12/28/2023	12/28/2023
Spike I.D.:	23-043	23-043
Decay Corrected Spike Concentration (pCi/mL):	38.469	38.469
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.816	0.818
Target Conc. (pCi/L, g, F):	4.712	4.705
Uncertainty (Calculated):	0.231	0.231
Result (pCi/L, g, F):	4.263	4.321
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.961	0.980
Numerical Performance Indicator:	-0.89	-0.75
Percent Recovery:	90.47%	91.82%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator:	LCSD76936 4.263 0.961 4.321 0.980 NO -0.083	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	1.49%	
Duplicate Status vs Numerical Indicator:	Pass	
Duplicate Status vs RPD:		
% PPD Limit:	36%	1

Lower % Recovery Limits:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D. Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Result 2 Signa CSO (point, g, r). Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

ter than ten times the blank value, the blank is accoptable; otherwise this batch must be re-prepped.

WB activity < MOC, Pass

Mulus

December 27, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on December 11, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Kansas City
- Pace Analytical Services Salina

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Nevada Certification #: KS000212023-1

Missouri Inorganic Drinking Water Certification #: 10090 Oklahoma Certification #: 2022-057

Arkansas Drinking Water Florida: Cert E871149 SEKS WET

Tours Certification #: 20 00570

Arkansas Certification #: 88-00679 Texas Certification #: T104704407-23-17 Illinois Certification #: 2000302023-5 Utah Certification #: KS000212022-12

Illinois Certification #: 118 Illinois Certification #: 004592

Kansas/NELAP Certification #: E-10116 Kansas Field Laboratory Accreditation: # E-92587 Louisiana Certification #: 03055 Missouri SEKS Micro Certification: 10070

Pace Analytical Services Salina

528 N 9th Street, Salina, KS 67401 Oklahoma: 2022-055
Texas NELAP: T104704246-22-14 Kansas: Cert No. E-10146

SAMPLE SUMMARY

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60443807001	MW-37-121123	Water	12/11/23 10:25	12/11/23 16:45
60443807002	MW-38-121123	Water	12/11/23 11:15	12/11/23 16:45
60443807003	MW-39-121123	Water	12/11/23 13:05	12/11/23 16:45
60443807004	MW-40-121123	Water	12/11/23 13:45	12/11/23 16:45
60443807005	MW-K-121123	Water	12/11/23 11:50	12/11/23 16:45
60443807006	MW-L-121123	Water	12/11/23 12:35	12/11/23 16:45
60443807007	LEC IAP-DUP-121123	Water	12/11/23 11:50	12/11/23 16:45

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60443807001	MW-37-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443807002	MW-38-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443807003	MW-39-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443807004	MW-40-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443807005	MW-K-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443807006	MW-L-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443807007	LEC IAP-DUP-121123	EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	11	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA

PASI-K = Pace Analytical Services - Kansas City PASI-SA = Pace Analytical Services - Salina

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: December 27, 2023

General Information:

7 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: December 27, 2023

General Information:

7 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

LEC INACTIVE ASH POND CCR Project:

Pace Project No.: 60443807

Method: **EPA 245.1 Description: 245.1 Mercury**

Client: Evergy Kansas Central, Inc.

Date: December 27, 2023

General Information:

7 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 878247

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60443657001,60444502001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3478932)
 - Mercury

PROJECT NARRATIVE

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Evergy Kansas Central, Inc.
Date: December 27, 2023

General Information:

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Salina. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 877737

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60443319001,60443807002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3476689)
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Sample: MW-37-121123	Lab ID: 6044	13807001	Collected: 12/11/2	3 10:25	Received: 12	/11/23 16:45 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
	Pace Analytical	Services -	Kansas City					
ithium, Total Recoverable	0.019	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:01	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EP	A 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7440-36-0	
Arsenic, Total Recoverable	0.0046	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7440-38-2	
Barium, Total Recoverable	0.073	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7440-39-3	
Beryllium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:34	7440-41-7	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:34	7440-43-9	
Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7440-48-4	
ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7439-92-1	
Molybdenum, Total Recoverable	0.071	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:34	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EP	A 245.1			
-	Pace Analytical	Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:12	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Salina					
Fluoride	0.46	mg/L	0.20	1		12/20/23 17:08	10001 10 0	

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Sample: MW-38-121123	Lab ID: 6044	43807002	Collected: 12/11/2	23 11:15	Received: 12	/11/23 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
ithium, Total Recoverable	0.041	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:03	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	thod: EF	A 200.8			
	Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7440-36-0	
Arsenic, Total Recoverable	0.018	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7440-38-2	
Barium, Total Recoverable	0.042	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7440-39-3	
Beryllium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:38	7440-41-7	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:38	7440-43-9	
Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7440-48-4	
ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7439-92-1	
Nolybdenum, Total Recoverable	0.078	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:38	7440-28-0	
45.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	thod: EF	A 245.1			
-	Pace Analytica	l Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:14	7439-97-6	
00.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytica	l Services -	Salina					
Fluoride	3.7	mg/L	0.20	1		12/20/23 17:22		

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Parameters Results Units Report Limit DF Prepared Analyzed CAS No.	Sample: MW-39-121123	Lab ID: 604	43807003	Collected: 12/11/2	23 13:05	Received: 12	2/11/23 16:45 M	latrix: Water	
Pace Analytical Services - Kansas City 1.	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Kansas City Antimony, Total Recoverable Arsenic, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-36-0 Arsenic, Total Recoverable O.010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-38-2 Barium, Total Recoverable O.029 mg/L O.00050 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-39-3 Chromium, Total Recoverable O.00050 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-41-7 Cadmium, Total Recoverable O.0010 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-41-7 Cadmium, Total Recoverable O.0011 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-43-9 Chromium, Total Recoverable O.0011 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Lead, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Caded, Total Recoverable O.016 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.016 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.16 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.16 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Callium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12	6010 MET ICP	Analytical Meth	nod: EPA 60	010 Preparation Met	hod: EP	A 3010			
Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Kansas City Antimony, Total Recoverable Arsenic, Total Recoverable Arsenic, Total Recoverable Barium, Total Recov		Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	ithium, Total Recoverable	0.036	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:05	7439-93-2	
Antimony, Total Recoverable	200.8 MET ICPMS	Analytical Meth	nod: EPA 20	00.8 Preparation Met	thod: EF	PA 200.8			
Arsenic, Total Recoverable O.010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-38-2 Barium, Total Recoverable O.029 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-39-3 Beryllium, Total Recoverable O.00050 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-41-7 Cadmium, Total Recoverable O.00050 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-41-7 Cadmium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-43-9 Chromium, Total Recoverable O.0011 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-47-3 Cabalt, Total Recoverable O.0011 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadad, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadad, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-92-1 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-28-0 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-28-0 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-28-0 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-28-0 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-28-0 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cadadium, Total Recoverable O.0		Pace Analytica	l Services -	Kansas City					
Arsenic, Total Recoverable O.010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-38-2 Barium, Total Recoverable O.029 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-39-3 Beryllium, Total Recoverable O.00050 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-41-7 Cadmium, Total Recoverable O.00050 mg/L O.00050 1 12/15/23 07:41 12/18/23 14:41 7440-41-7 Cadmium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-43-9 Chromium, Total Recoverable O.0011 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-47-3 Cobalt, Total Recoverable O.0011 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cead, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Cead, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7449-92-1 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7439-92-1 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recoverable O.0010 mg/L O.0010 1 12/15/23 07:41 12/18/23 14:41 7440-48-4 Ceadenium, Total Recov	Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7440-36-0	
Composition Composition	Arsenic, Total Recoverable	0.010	•	0.0010	1	12/15/23 07:41	12/18/23 14:41	7440-38-2	
Academium, Total Recoverable Academium, Total Recoverable	Sarium, Total Recoverable	0.029	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7440-39-3	
Chromium, Total Recoverable Chro	eryllium, Total Recoverable	<0.00050		0.00050	1	12/15/23 07:41	12/18/23 14:41	7440-41-7	
Cobalt, Total Recoverable Cobalt, Total Recoverable Cobalt, Total Recoverable Cobalt, Total Recoverable Country Output Outpu	Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:41	7440-43-9	
Analytical Method: EPA 245.1 Preparation Method: EPA 245.1	Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7440-47-3	
Molybdenum, Total Recoverable 0.16 mg/L 0.0010 1 12/15/23 07:41 12/18/23 14:41 7439-98-7 12/18/23 14:41 7439-98-7 12/18/23 07:41 12/18/23 14:41 7439-98-7 12/18/23 07:41 12/18/23 14:41 7782-49-2 12/18/23 07:41 12/18/23 14:41 1	Cobalt, Total Recoverable	0.0011	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7440-48-4	
Color Colo	ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7439-92-1	
Analytical Method: EPA 245.1 Preparation Method: EPA 245.1 Pace Analytical Services - Kansas City 40.00 Ug/L Analytical Method: EPA 245.1 Preparation Method: EPA 245.1 Analytical Services - Kansas City 40.20 Ug/L Analytical Method: EPA 300.0 Pace Analytical Services - Salina	Nolybdenum, Total Recoverable	0.16	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7439-98-7	
Analytical Method: EPA 245.1 Preparation Method: EPA 245.1 Pace Analytical Services - Kansas City Analytical Method: EPA 245.1 Preparation Method: EPA 245.1 Pace Analytical Services - Kansas City 40.20 ug/L 0.20 1 12/26/23 09:09 12/27/23 08:17 7439-97-6 400.0 IC Anions 28 Days Analytical Method: EPA 300.0 Pace Analytical Services - Salina	Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7782-49-2	
Pace Analytical Services - Kansas City 40.20 ug/L 0.20 1 12/26/23 09:09 12/27/23 08:17 7439-97-6 40.00 IC Anions 28 Days Analytical Method: EPA 300.0 Pace Analytical Services - Salina	hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:41	7440-28-0	
Mercury	45.1 Mercury	Analytical Meth	nod: EPA 24	15.1 Preparation Met	thod: EF	PA 245.1			
800.0 IC Anions 28 Days Analytical Method: EPA 300.0 Pace Analytical Services - Salina	-	Pace Analytica	l Services -	Kansas City					
Pace Analytical Services - Salina	Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:17	7439-97-6	
· · · · · · · · · · · · · · · · · · ·	800.0 IC Anions 28 Days	Analytical Method: EPA 300.0							
luoride 1.7 mg/l 0.20 1 12/20/23 18:06 16984-48-8	•	Pace Analytica	l Services -	Salina					
111 111g/E 01E0 1 12/20/20 10:00 1000+ 40 0	- Fluoride	1.7	mg/L	0.20	1		12/20/23 18:06	16984-48-8	

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Sample: MW-40-121123	Lab ID: 604	43807004	Collected: 12/11/2	23 13:45	Received: 12	2/11/23 16:45 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	010 Preparation Met	hod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
ithium, Total Recoverable	0.039	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:07	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	00.8 Preparation Met	thod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7440-36-0	
Arsenic, Total Recoverable	0.015	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7440-38-2	
Barium, Total Recoverable	0.035	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7440-39-3	
Beryllium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:51	7440-41-7	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:51	7440-43-9	
Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7440-48-4	
ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 12:47	7439-92-1	
Nolybdenum, Total Recoverable	0.056	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:51	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 12:47	7440-28-0	
45.1 Mercury	Analytical Meth	nod: EPA 24	15.1 Preparation Met	thod: EF	PA 245.1			
- -	Pace Analytica	l Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:19	7439-97-6	
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
-	Pace Analytica	l Services -	Salina					
Fluoride	1.3	mg/L	0.20	1		12/20/23 18:20	16984-48-8	
		-						

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Sample: MW-K-121123	Lab ID: 604	43807005	Collected: 12/11/2	23 11:50	Received: 12	2/11/23 16:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Metl	hod: EP/	A 3010			
	Pace Analytica	l Services -	Kansas City					
ithium, Total Recoverable	0.040	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:09	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	thod: EP	A 200.8			
	Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7440-36-0	
Arsenic, Total Recoverable	0.056	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7440-38-2	
Barium, Total Recoverable	0.043	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7440-39-3	
Beryllium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:54	7440-41-7	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:54	7440-43-9	
Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7440-48-4	
ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7439-92-1	
Molybdenum, Total Recoverable	0.021	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:54	7440-28-0	
45.1 Mercury	Analytical Meth	nod: EPA 24	5.1 Preparation Met	thod: EP	A 245.1			
	Pace Analytica	l Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:21	7439-97-6	
00.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
-	Pace Analytica	l Services -	Salina					
	3.5							

ANALYTICAL RESULTS

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Sample: MW-L-121123	Lab ID: 6044	43807006	Collected: 12/11/2	3 12:35	Received: 12	//11/23 16:45 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP/	A 3010			
	Pace Analytica	l Services -	Kansas City					
ithium, Total Recoverable	0.076	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:11	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EP	A 200.8			
	Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/19/23 12:33	7440-36-0	
Arsenic, Total Recoverable	0.026	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:57	7440-38-2	
Sarium, Total Recoverable	0.032	mg/L	0.0010	1	12/15/23 07:41	12/19/23 12:33	7440-39-3	
Beryllium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:57	7440-41-7	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:57	7440-43-9	
Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:57	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:57	7440-48-4	
ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/19/23 12:33	7439-92-1	
Molybdenum, Total Recoverable	0.044	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:57	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:57	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/19/23 12:33	7440-28-0	
45.1 Mercury	Analytical Meth	nod: EPA 24	5.1 Preparation Met	hod: EP	'A 245.1			
	Pace Analytica	l Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:28	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
	Pace Analytica	l Services -	Salina					

ANALYTICAL RESULTS

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Sample: LEC IAP-DUP-121123	Lab ID: 6044	43807007	Collected: 12/11/2	3 11:50	Received: 12	/11/23 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP/	A 3010			
	Pace Analytica	l Services -	Kansas City					
ithium, Total Recoverable	0.042	mg/L	0.010	1	12/15/23 07:41	12/20/23 15:13	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EP	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7440-36-0	
Arsenic, Total Recoverable	0.056	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7440-38-2	
arium, Total Recoverable	0.044	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7440-39-3	
eryllium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 15:00	7440-41-7	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 15:00	7440-43-9	
Chromium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7440-48-4	
ead, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 12:50	7439-92-1	
Molybdenum, Total Recoverable	0.022	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 15:00	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 12:50	7440-28-0	
45.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EP	PA 245.1			
-	Pace Analytica	l Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	12/26/23 09:09	12/27/23 08:30	7439-97-6	
00.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytica	l Services -	Salina					
Fluoride	3.5	mg/L	0.20	1		12/20/23 21:24	16984-48-8	

Mercury

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

QC Batch: 878247 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

METHOD BLANK: 3478928 Matrix: Water

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 ug/L
 <0.20</td>
 0.20
 12/27/23 08:01

LABORATORY CONTROL SAMPLE: 3478929

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Mercury 5.0 99 85-115 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3478930 3478931

MS MSD

60443657001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual ND 5 20 Mercury ug/L 5 4.9 5.1 99 103 70-130

MATRIX SPIKE SAMPLE: 3478932

Date: 12/27/2023 03:48 PM

MS MS % Rec 60444502001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers ND 5 3.2 64 70-130 M1 Mercury ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

QC Batch: 877233 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

METHOD BLANK: 3474531 Matrix: Water

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.0010	0.0010	12/18/23 13:59	
Arsenic	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Barium	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Beryllium	mg/L	< 0.00050	0.00050	12/18/23 13:59	
Cadmium	mg/L	< 0.00050	0.00050	12/18/23 13:59	
Chromium	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Cobalt	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Lead	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Molybdenum	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Selenium	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Thallium	mg/L	<0.0010	0.0010	12/18/23 13:59	

LABORATORY CONTROL SAMPLE:	3474532					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.04	0.040	99	85-115	
Arsenic	mg/L	0.04	0.041	102	85-115	
Barium	mg/L	0.04	0.040	100	85-115	
Beryllium	mg/L	0.04	0.040	99	85-115	
Cadmium	mg/L	0.04	0.041	103	85-115	
Chromium	mg/L	0.04	0.040	99	85-115	
Cobalt	mg/L	0.04	0.041	102	85-115	
Lead	mg/L	0.04	0.042	104	85-115	
Molybdenum	mg/L	0.04	0.039	98	85-115	
Selenium	mg/L	0.04	0.041	103	85-115	
Thallium	mg/L	0.04	0.040	100	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3474		MCD	3474534							
	6	60443833002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	<0.0010	0.04	0.04	0.039	0.039	97	98	70-130	1	20	
Arsenic	mg/L	< 0.0010	0.04	0.04	0.040	0.041	99	101	70-130	2	20	
Barium	mg/L	23.8 ug/L	0.04	0.04	0.065	0.065	103	103	70-130	0	20	
Beryllium	mg/L	<0.50 ug/L	0.04	0.04	0.033	0.034	83	85	70-130	3	20	
Cadmium	mg/L	< 0.00050	0.04	0.04	0.037	0.038	93	94	70-130	1	20	
Chromium	mg/L	<1.0 ug/L	0.04	0.04	0.040	0.041	99	101	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 3474	533		3474534							
		0.4.400000000	MS	MSD	140	MOD	140	MOD	0/ D			
_		0443833002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	mg/L	<0.0010	0.04	0.04	0.040	0.041	98	100	70-130	1	20	
Lead	mg/L	<1.0 ug/L	0.04	0.04	0.039	0.039	97	97	70-130	0	20	
Molybdenum	mg/L	0.0023	0.04	0.04	0.043	0.043	101	102	70-130	1	20	
Selenium	mg/L	< 0.0010	0.04	0.04	0.039	0.039	98	99	70-130	0	20	
Thallium	mg/L	< 0.0010	0.04	0.04	0.038	0.038	95	96	70-130	1	20	

MATRIX SPIKE SAMPLE:	3474535						
		60443807003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	<0.0010	0.04	0.038	94	70-130	
Arsenic	mg/L	0.010	0.04	0.051	102	70-130	
Barium	mg/L	0.029	0.04	0.070	103	70-130	
Beryllium	mg/L	< 0.00050	0.04	0.031	76	70-130	
Cadmium	mg/L	< 0.00050	0.04	0.035	87	70-130	
Chromium	mg/L	< 0.0010	0.04	0.041	102	70-130	
Cobalt	mg/L	0.0011	0.04	0.041	101	70-130	
Lead	mg/L	< 0.0010	0.04	0.038	95	70-130	
Molybdenum	mg/L	0.16	0.04	0.20	109	70-130	
Selenium	mg/L	< 0.0010	0.04	0.041	103	70-130	
Thallium	mg/L	< 0.0010	0.04	0.038	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Lithium

Date: 12/27/2023 03:48 PM

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

QC Batch: 877231 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

METHOD BLANK: 3474523 Matrix: Water

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 mg/L
 <0.010</td>
 0.010
 12/20/23 14:33

LABORATORY CONTROL SAMPLE: 3474524

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium 1.0 101 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3474525 3474526

MS MSD

60443833001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Qual Result Conc. % Rec Limits 0.020 Lithium mg/L 1.1 1.1 107 110 75-125 3 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

QC Batch: 877737 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Salina

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

METHOD BLANK: 3476687 Matrix: Water

Associated Lab Samples: 60443807001, 60443807002, 60443807003, 60443807004, 60443807005, 60443807006, 60443807007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Fluoride
 mg/L
 ND
 0.20
 12/20/23 13:35

LABORATORY CONTROL SAMPLE: 3476688

Spike LCS LCS % Rec Conc. Limits Parameter Units Result % Rec Qualifiers Fluoride 2.5 2.5 99 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3476689 3476690

MS MSD

60443319001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Result Conc. Conc. % Rec % Rec Limits Qual 15 M1 Fluoride mg/L 0.72 2.5 2.5 2.7 2.7 78 80 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3476691 3476692

MS MSD

60443807002 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Fluoride 3.7 2.5 6.2 2.5 6.3 104 102 15 mg/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/27/2023 03:48 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH POND CCR

Pace Project No.: 60443807

Date: 12/27/2023 03:48 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60443807001	MW-37-121123	EPA 3010	877231	EPA 6010	877246
60443807002	MW-38-121123	EPA 3010	877231	EPA 6010	877246
60443807003	MW-39-121123	EPA 3010	877231	EPA 6010	877246
60443807004	MW-40-121123	EPA 3010	877231	EPA 6010	877246
60443807005	MW-K-121123	EPA 3010	877231	EPA 6010	877246
60443807006	MW-L-121123	EPA 3010	877231	EPA 6010	877246
60443807007	LEC IAP-DUP-121123	EPA 3010	877231	EPA 6010	877246
60443807001	MW-37-121123	EPA 200.8	877233	EPA 200.8	877247
60443807002	MW-38-121123	EPA 200.8	877233	EPA 200.8	877247
60443807003	MW-39-121123	EPA 200.8	877233	EPA 200.8	877247
60443807004	MW-40-121123	EPA 200.8	877233	EPA 200.8	877247
60443807005	MW-K-121123	EPA 200.8	877233	EPA 200.8	877247
60443807006	MW-L-121123	EPA 200.8	877233	EPA 200.8	877247
60443807007	LEC IAP-DUP-121123	EPA 200.8	877233	EPA 200.8	877247
60443807001	MW-37-121123	EPA 245.1	878247	EPA 245.1	878380
60443807002	MW-38-121123	EPA 245.1	878247	EPA 245.1	878380
60443807003	MW-39-121123	EPA 245.1	878247	EPA 245.1	878380
60443807004	MW-40-121123	EPA 245.1	878247	EPA 245.1	878380
60443807005	MW-K-121123	EPA 245.1	878247	EPA 245.1	878380
60443807006	MW-L-121123	EPA 245.1	878247	EPA 245.1	878380
60443807007	LEC IAP-DUP-121123	EPA 245.1	878247	EPA 245.1	878380
60443807001	MW-37-121123	EPA 300.0	877737		
60443807002	MW-38-121123	EPA 300.0	877737		
0443807003	MW-39-121123	EPA 300.0	877737		
0443807004	MW-40-121123	EPA 300.0	877737		
0443807005	MW-K-121123	EPA 300.0	877737		
60443807006	MW-L-121123	EPA 300.0	877737		
60443807007	LEC IAP-DUP-121123	EPA 300.0	877737		

Pace ANALYTICAL SERVICES

DC#_Title: ENV-FRM-LENE-0009_San

WO#:60443807

Revision: 2 Effective Date: 01/12/

Project Manager Review;	Date	D:
Commenter Resolution.		
Comments/ Resolution:		
Person Contacted: Date/Til		Tions Date Nequilled: 1 / 14
Additional labels attached to 5035A / TX1005 vials in the field? Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Headspace in VOA vials (>6mm):	□Yes □No 12/N/A	
Trip Blank present:	□Yes □No □M/A	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	□Yes □No	
(HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#:	67187	
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Samples contain multiple phases? Matrix:	□Yes ☑No □N/A	
Sample labels match COC: Date / time / ID / analyses	∐Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □ N/A	
Containers intact:	VZYes □No □N/A	
Pace containers used:	Yes No N/A	
Correct containers used:	ØYes □No □N/A	
Sufficient volume:	WYes □No □N/A	
Rush Turn Around Time requested:	□Yes ☑No □N/A	
Short Hold Time analyses (<72hr):	□Yes ☑No □N/A	
Samples arrived within holding time:	ØYes □No □N/A	
Chain of Custody relinquished:	Øyes □No □N/A	
Chain of Custody present:	ØŶes □No □N/A	
Temperature should be above freezing to 6°C 2 - 5		7-2
Cooler Temperature (°C): As-read 20 Corr. Fact	or ~~} Correc	eted 2 4 Date and initials of person 2/ 3/23
Thermometer Used: Type of	lce: (Web) Blue No	
Packing Material: Bubble Wrap □ Bubble Bags □		None □ Other ☑ 2PLC
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	
	PEX □ ECI □ e Shipping Label Use	Pace □ Xroads □ Client ☑ Other □ ed? Yes No □
Courier: FedEx UPS VIA Clay		B G W M G W M M M M M M M M M M

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

P	vivi.paseraus.com																													
Section Require	n A d Client Information:	Section B Required Pro	niect In	formation:						tion (F	age:		of	
Compan		Report To: J.							Atter		omatic A	_	ınts l	^o aya	able					\neg						_				
Address	400 E. Van Buren St	Copy To:	aura	Hines, Sar	mantha K	aney, Meli	ssa Mich	nels	Com	pany f	Name:	ΕV	/ERC	Y K	ANS	SAS	CEN	ITR/	AL.	Nd	DEG	ULA.	TOP:	V AG	ENC	~				
	Suite 545 Phoenix, AZ 85004								Addr	ess:	S		SEC							_	_	NPDE	_	_		_	\ A / A T			2.144.755
Email To	skaney@haleyaldrich.com	Purchase Ord	ler No.	10.IEC-	0000047	747			_	Quote							_			-						UND	WAII			G WATER
Phone:	507-251-2232 Fax:	Project Name							Refer			liee	C=:II.		12.5	CO 4	400			+	_	UST			RCRA	A			OTHER	
	ted Due Date/TAT:			EC IIIactivi	ASII POI	id CCR			Mana	ger:	, ,			er, 9	13-5	03-1	403			_	Site	Loca	tion		к	S				
reques	Se Date Pate/ IAT.	Project Numb	ei.						Pace	Prome	#: 90	557,	9									STA	_	-			_			
			_							_		-				L	F	Requ	ıest	ed A	naly	sis F	ilter	ed (Y	(/N)					
	Section D Valid Matrix C Required Client Information MATRIX DRINKING WATER	CODE DW	codes to left)		COLI	ECTED		ļ		L	Pr	esei	vativ	es		N/A	Ļ				_				_					
	WATER WASTE WATER PRODUCT SOIL/SOLID	P		COIV	POSITE ART	COMPO END/G		COLLECTION									Cd,Cr					ombin	S				Į Į			
	SAMPLE ID OIL WPE AIR (A-Z, 0-9 / ,-) OTHER	OL WP	JE (see valid	1					INERS							Test	Sb,As,Ba,Be	o,Se,T	اءا	<u> </u>	g	3/228+0	Sheets				Chlorine (Y/N)	60	4438	707
*	Sample IDs MUST BE UNIQUE TISSUE	TS (MATRIX CODE				13	PLE TEMP	CONTAINERS	reserve	H ₂ SO₄	,	NaOH	, 203 203	Other	↓ Analysis Test	8 Sb,A	Cr,Co,Pb,Mo,Se,Ti	6010 Lithium	245.1 Mercury	300.0 Fluoride	Radium 226/228+combine	Radium QC				Residual Ch			
TEM			MAN MAN	DATE	TIME	DATE	TIME	SAMPLE	# P	릵		모		Na ₂	탏	اِ≼ا	200.8	띩	8	5.	8	\adi	≷adi				Resi	Pare	Project I	lo./ Lab I.D.
1	MW-37-121123	$\overline{}$	VT	1	1	12/11/23	10:25		2	1	1	\neg	Н	+	Ť	Ħ	X	X	Х		X	╁	۳	\dashv	\top	+	┪	1 400	o i Tojeci i	10.7 Lab 1.D.
2	MW-38-121123		VT			12/11/23	11:15		2	1	1		\vdash	\top	+	1	X	X	Х	_	x	十		П	1	Ť	Н			
3	MW-39-121123		VT			12/11/23	13:05		2	-	1		Ħ	T		1	x	х	×	_	×	Τ			1	\top	П			
4	MW-40-121123	V	VΤ			12/11/23	13:45		2	1	1		П	1	T	1	х	х	х	х	x	1	П	П		T	П			
5	MW-K-121123	V	VT			12/11/23	11:50		2	1	1					1	х	х	х	х	х						П			
6	MW-L-121123		VT			12/11/23	12:35		2	1	1			H]	Х	х	Х	х	х						П			
7	LEC IAP-DUP-121123	V	VT			12/11/23	11:50		2	1							Х	х	х	х	x						П			
8																											П			
9																														
10																											Ш			
11																											Ш			
12									<u> </u>						L	L											Ш			
	ADDITIONAL COMMENTS	R	ELING	UISHED BY	/ AFFILIAT	TION	DAT	E		TIME				ACCI	EPTE	D BY	/ AF	FILIA	TION	1		DAT	Έ		IME	1_		SAM	PLE CONDIT	IONS
			Ma	tt VanderPu	ıtten SCS		12/11	/23	1	16:00				_			\leq	5_	_		1	7/1	1	16	15	₽,	9	4	14	l Y
															70							,								
											\top										1									
											+							0			\dagger					T				
Pa					SAMPL	ER NAME A]	ပ္	Б С	ly soler	Samples Intact (Y/N)
je 2						PRINT Nam	e of SAM	LER	Mat	t Var	nderF	utte	n_]	Тетр іп °С	Received on Ice (Y/N)	ustoc ed Cr	yles (Y/N)
Page 24 of 25						SIGNATUR	E of SAME	LER	140	en	16	id	10	A	~	_		ATE:				1:	2/11/	/23			je	Rec o	Custody Sealed Cooler (Y/IN)	Sam
25													9)																	

Client: Evergy Kansas Central, Inc.

Profile # 965) 9

site: LEC Inactive Ash Pond (CR

AG3S

AG2U

AG3U

AG4U

AG5U

250mL H2SO4 amber glass

500mL unpres amber glass

250mL unpres amber glass

125mL unpres amber glass

100mL unpres amber glass

		_	_	_	_	_	_											_													
COC	Matrix	VG9H	DG9H	DG9O	VG9U	DG9N	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	4G5U	JGFU	WGKU	WGDU	BP1U	BP2U	вРзи	BP1N	BP3N	ВРЗЕ	BP3S	врзс	BP3Z	WPDU	ZPLC	her	
1	W												_	_	_		>	>_			7	 "	7	8	<u>m</u>	8	<u>m</u>	5	Ñ	- g	-
2																					+		+							-	
3																					+		+								-+
4																					1		+				-				
5																							+								-
6	\perp																														
7	V																				J		1				-				-
8																															
9																															
10																														_	
11																															
12																															

Container Codes

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic		Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	To.	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	- fii	Summa Can
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		Journal Gari
VG9T	40mL Na Thio, clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		
		AG2S	500mL H2SO4 amber glass	BP3C 250mL NaOH plastic		Matrix	
20411	4.00		The second secon	10.00	1200m2 reacti plastic		

BP3F

WPDU

BP3N 250mL HNO3 plastic SL Solid BP3U 250mL unpreserved plastic NAL Non-aqueous Liquid BP3S 250mL H2SO4 plastic OL OIL BP3Z 250mL NaOH, Zn Acetate WP Wipe BP4U 125mL unpreserved plastic DW Drinking Water BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic

WT

Water

250mL HNO3 plastic - field filtered

16oz unpresserved plstic

Work Order Number:

BG1U

BG3H

BG3U

WGDU

66443807

1liter unpres glass

16oz clear soil jar

250mL HCL Clear glass

250mL Unpres Clear glass

Page 25 of 25

ATTACHMENT 2-3
March 2024 Semiannual Sampling Event
Laboratory Analytical Reports

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

March 24, 2024

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pa

alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification #. Co2

Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification
Iowa Certification #: 391

Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New Mexico Certification #: PAU1457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60448404001	MW-37-030424	Water	03/04/24 14:55	03/06/24 16:30
60448404002	MW-38-030524	Water	03/05/24 09:05	03/06/24 16:30
60448404003	MW-39-030524	Water	03/05/24 11:15	03/06/24 16:30
60448404004	MW-40-030524	Water	03/05/24 11:55	03/06/24 16:30
60448404005	MW-K-030524	Water	03/05/24 09:45	03/06/24 16:30
60448404006	MW-L-030524	Water	03/05/24 10:40	03/06/24 16:30
60448404007	LEC IAP-DUP-030524	Water	03/05/24 08:00	03/06/24 16:30

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60448404001	MW-37-030424	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60448404002	MW-38-030524	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60448404003	MW-39-030524	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60448404004	MW-40-030524	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60448404005	MW-K-030524	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60448404006	MW-L-030524	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60448404007	LEC IAP-DUP-030524	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: March 24, 2024

General Information:

7 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: March 24, 2024

General Information:

7 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.

Date: March 24, 2024

General Information:

7 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: MW-37-030424 PWS:	Lab ID: 604484 (Site ID:	D4001 Collected: 03/04/24 14:55 Sample Type:	Received:	03/06/24 16:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg		•		
Radium-226	EPA 903.1	0.120 ± 0.578 (1.09) C:NA T:87%	pCi/L	03/20/24 13:59	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.874 ± 0.513 (0.971) C:82% T:78%	pCi/L	03/20/24 12:18	3 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.994 ± 1.09 (2.06)	pCi/L	03/21/24 15:17	7440-14-4	

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: MW-38-030524 PWS:	Lab ID: 604484 Site ID:	04002 Collected: 03/05/24 09:05 Sample Type:	Received:	03/06/24 16:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg		•		
Radium-226	EPA 903.1	0.179 ± 0.801 (1.46) C:NA T:87%	pCi/L	03/20/24 13:59	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 904.0	0.779 ± 0.503 (0.976) C:76% T:82%	pCi/L	03/20/24 12:18	3 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.958 ± 1.30 (2.44)	pCi/L	03/21/24 15:17	7440-14-4	

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: MW-39-030524 PWS:	Lab ID: 604484 Site ID:	04003 Collected: 03/05/24 11:15 Sample Type:	Received:	03/06/24 16:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 903.1	0.198 ± 0.672 (1.24) C:NA T:89%	pCi/L	03/20/24 13:59	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 904.0	0.876 ± 0.484 (0.893) C:79% T:81%	pCi/L	03/20/24 12:18	3 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.07 ± 1.16 (2.13)	pCi/L	03/21/24 15:17	7 7440-14-4	

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: MW-40-030524 PWS:	Lab ID: 604484 Site ID:	04004 Collected: 03/05/24 11:55 Sample Type:	Received:	03/06/24 16:30 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg		•		
Radium-226	EPA 903.1	0.412 ± 0.714 (1.25) C:NA T:88%	pCi/L	03/20/24 14:12	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.495 ± 0.443 (0.906) C:77% T:83%	pCi/L	03/20/24 12:18	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.907 ± 1.16 (2.16)	pCi/L	03/21/24 15:17	7440-14-4	

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: MW-K-030524 PWS:	Lab ID: 604484 0 Site ID:	04005 Collected: 03/05/24 09:45 Sample Type:	Received:	03/06/24 16:30 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg		•		
Radium-226	EPA 903.1	0.0616 ± 0.554 (1.07) C:NA T:86%	pCi/L	03/20/24 14:12	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.582 ± 0.487 (0.986) C:79% T:79%	pCi/L	03/20/24 12:18	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.644 ± 1.04 (2.06)	pCi/L	03/21/24 15:17	7440-14-4	

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: MW-L-030524 PWS:	Lab ID: 6044840 ⁴ Site ID:	4006 Collected: 03/05/24 10:40 Sample Type:	Received:	03/06/24 16:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 903.1	0.302 ± 0.568 (1.01) C:NA T:95%	pCi/L	03/20/24 14:12	2 13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 904.0	0.823 ± 0.485 (0.906) C:81% T:79%	pCi/L	03/20/24 15:50	15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.13 ± 1.05 (1.92)	pCi/L	03/21/24 15:17	7440-14-4	

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Sample: LEC IAP-DUP-030524 PWS:	Lab ID: 604484 Site ID:	O4007 Collected: 03/05/24 08:00 Sample Type:	Received:	03/06/24 16:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.115 ± 0.452 (0.865) C:NA T:90%	pCi/L	03/20/24 14:12	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.536 ± 0.424 (0.843) C:82% T:79%	pCi/L	03/20/24 15:50	0 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.651 ± 0.876 (1.71)	pCi/L	03/21/24 15:17	7 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

QC Batch: 653876 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60448404001, 60448404002, 60448404003, 60448404004, 60448404005, 60448404006, 60448404007

METHOD BLANK: 3186143 Matrix: Water

Associated Lab Samples: 60448404001, 60448404002, 60448404003, 60448404004, 60448404005, 60448404006, 60448404007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.315 ± 0.267 (0.332) C:NA T:93%
 pCi/L
 03/20/24 13:46

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

QC Batch: 653878 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60448404001, 60448404002, 60448404003, 60448404004, 60448404005, 60448404006, 60448404007

METHOD BLANK: 3186148 Matrix: Water

Associated Lab Samples: 60448404001, 60448404002, 60448404003, 60448404004, 60448404005, 60448404006, 60448404007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.523 ± 0.331 (0.614) C:88% T:79%
 pCi/L
 03/20/24 11:16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 03/24/2024 05:21 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH PONDS RADCHEM

Pace Project No.: 60448404

Date: 03/24/2024 05:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60448404001	MW-37-030424	EPA 903.1	653876		
60448404002	MW-38-030524	EPA 903.1	653876		
60448404003	MW-39-030524	EPA 903.1	653876		
60448404004	MW-40-030524	EPA 903.1	653876		
60448404005	MW-K-030524	EPA 903.1	653876		
60448404006	MW-L-030524	EPA 903.1	653876		
60448404007	LEC IAP-DUP-030524	EPA 903.1	653876		
60448404001	MW-37-030424	EPA 904.0	653878		
60448404002	MW-38-030524	EPA 904.0	653878		
60448404003	MW-39-030524	EPA 904.0	653878		
60448404004	MW-40-030524	EPA 904.0	653878		
60448404005	MW-K-030524	EPA 904.0	653878		
60448404006	MW-L-030524	EPA 904.0	653878		
60448404007	LEC IAP-DUP-030524	EPA 904.0	653878		
60448404001	MW-37-030424	Total Radium Calculation	656784		
60448404002	MW-38-030524	Total Radium Calculation	656784		
60448404003	MW-39-030524	Total Radium Calculation	656784		
60448404004	MW-40-030524	Total Radium Calculation	656784		
60448404005	MW-K-030524	Total Radium Calculation	656784		
60448404006	MW-L-030524	Total Radium Calculation	656784		
60448404007	LEC IAP-DUP-030524	Total Radium Calculation	656784		

WO#:60448404

4	Pace	DC#_Title: ENV	/-FRM-L	ENE-0	0009_Sample Cor				60448404			
2N	NLYTICAL SERVICES	Revision: 2	Effec	tive Da	te: 01	1/12/2	022	Issued	By: Lenex	a		
Client Name:		Everal Kungo	glev	1 hal								
Courier: FedEx	□ UPS	, ,		EX 🗆	EC	1 🗆	Pace	□ Xr	roads □ (ljent 😉	Other 🗆	
Tracking #:				Shippi	ng Lal	bel Use	d? Y	es 🗆	No 🗓			
Custody Seal on Co	ooler/Box	Present: Yes	No □	Seals	intact	Yes [N	o 🗆				
Packing Material: Thermometer Used	1	Bubb	le Bags □ Type of		3	am □ lue No		None 🗆	Other			
Cooler Temperature	e (°C): A	As-read 13, 4c	orr. Facto	r -0.	3	Correc	ted)	3.1		Date and in examining	itials of per contents: /	son /
emperature should be	above free	zing to 6°C	1							AF	- 3/	0
Chain of Custody pre	esent:			Ib Yes	□No	□n/a						
Chain of Custody reli	nquished:			□Wes	□No	□N/A						
Samples arrived with	in holding	time:		D ves	□No	□n/a						
Short Hold Time an	alyses (<7	'2hr):		□Yes	No	□N/A						
Rush Turn Around	Time requ	ested:		□Yes	ŮN₀	□n/a						
Sufficient volume:				Yes	□No	□n/a						
Correct containers us	sed:			Yes	□No	□n/a						
Pace containers used	d:			Yes	□No	□n/a						
Containers intact:				I √Yes	□No	□n/a						
Inpreserved 5035A	′ TX1005/1	006 soils frozen in 48	hrs?	□Yes	□No	N /A						
iltered volume recei	ved for dis	solved tests?		□Yes	□No	≌ N/A						
Sample labels match	COC: Dat	e / time / ID / analyse	S	V Yes	□No	□n/a						
Samples contain mul	tiple phase	es? Matrix:	,+	□Yes		□n/a						
	NaOH>9 Su	vation in compliance? Ifide, NaOH>10 Cyanide 3 TPH, OK-DRO)		12/es 620				ample ID: ime adde	s, volumes ed.	, lot #'s of p	oreservativ	e and the
Cyanide water sample	e checks:			□Yes								
ead acetate strip tur Potassium iodide test	•	Record only) s blue/purple? (Preser	ve)	□Yes								
rip Blank present:		•		□Yes		™ N/A						
leadspace in VOA vi	als (>6mn	n):		□Yes		M _{N/A}						
Samples from USDA				□Yes	□No	MN/A						
		35A / TX1005 vials in	the field?	□Yes	□No	M/N/A						
lient Notification/ F			py COC to		Υ /		F	ield Data	Required?	Y / N		
erson Contacted:	-		Date/Tir	ne:								
omments/ Resolutio	n:											
roject Manager Revi	ew:					Date	91					

Pace®	Pace® Location Reques Pace Analytical Kansas 9608 Loiret Blvd., Lenexa, KS	,):				Analytical				:		回然	30 2 455		AB US	E ONL	Y- Aff	ix Work	.order/Lo	gin Labe	Here		
Company Name:	Evergy Kansas Central, Ir	10			Contact/Report T							-	15.00		37									
Street Address:	818 S Kansas Avenue, To				Phone #:	(913)634								2000										
	,	, 10 00011			E-Mail:		mphrey@evergy	com									C (OD 0.		instructio				
					Cc E-Mail:		@haleyaldrich.co						E W.	842 C	C.28.		Scan	JK CC	oge for i	instructio	ons			
Customer Project #:						Skoneye	- naic yalar icn.co	,,,,				_		-	Cnosifi	Conto	i Ci-	- **			**Contai	per Size: /1) 11 /2!	500ml (2) 21	50ml (4)
Project Name:	LEC INACTIVE ASH POND	S RADCHEM			Invoice To: Lawrence Center							Specify Container S						a			125mL, (5	*Container Size: (1) 1L, (2) 500mL, (3) 250mL, (4) 25mL, (5) 100mL, (6) 40mL vial, (7) EnCore, (8)		
					Invoice E-Mail:		p@onlinecaptur	ecenter.com	n			Ė		Identif	y Conta	iner Pr	ecentat	ive Typ	0***			, (9) 90mL, (10) O		
Site Collection Info/	Facility ID (as applicable):				Purchase Order #		000095397		-			2	2	idelitii	y Conta	Tier Fi	eservat	ve Typi		-		rvative Types: (1) -) HCl, (5) NaOH, (6		
	Every Leverence F				applicable):										Ana	lvsis Re	equeste	<u>d</u>	_		NaHSQ4,	(8) Sod. Thiosulfat		
	Evergy Lawrence Ener	gy Center			Quote #:								(n			T					MeOH, (1			_
	d: [] AK [] PT []				County / State or	gin of sample(s): Kansas						SHEETS								1 1 -	e Spiller		d for
Data Deliverables:		Regulatory Progr	am (DW,	RCRA, etc	c.) as applicable:	Reportab	le [] Yes [X	(] No													Acctl	Num / Client ID):	
[]Level II []	Level III [] Level IV		Ruel	h (Dro. a	pproval require	d).	Invar mars	SID # or WW Pe					မြ							- 1	ÀL.			_ ide
[] EQUIS		[] Same Day			Day [] 3 Day [SID # OF WWW PE	rrmit # as	applicable	f.		combined,								Table	#:		Jano
[] EQUIS		Date Results					Field Filtered (if a	pplicable): [] Yes	[X] No		f	l dr								Profi	e / Template:		
[] Other		Requested:		-			Analysis:						00								965	5		9 4
Bioassay (B), Vapor	ert in Matrix box below); Drink (V), Surface Water (SW) Sedim	ing Water (DW), G	round Wa	ater (GW), Waste Water (V	/W), Product (F	P), Soll/Solid (SS), C	Oil (OL), Wipe	(WP), Tis	sue (TS),		226	228,									g / Bottle Ord.	ID:	91 10
Bioassay (B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (SL), Caulk (CK), L			Comp /	Composite Start Collected or Composite End # Res. Chlorine						Ē	Ē			- 1					EZ :	3080047		- Zati		
١	Sustomer Sample ID	"	Vlatrix *	Grab	Date	Time	Date	Time	Cont.	Results		Radium	Radium 2									Sample Corr	nment	Preserv
	MW-37-030424		GW	Grab	16	•	3/4/2024	14:55	2	-	-	Х	Х			T					60	V 4941	14	+
	MW-38-030524		GW	Grab	116		3/5/2024	9:05	2			х	х				1	\dashv				1.010		+
	MW-39-030524		GW	Grab	7.6		3/5/2024	11:15	2		2	Х	Х			7	7	\dashv	+	_	1			+
	MW-40-030524		GW	Grab	3.51		3/5/2024	11:55	2			Х	Х			-	_	\dashv	+	_				+
	MW-K-030524		GW	Grab	.6	-	3/5/2024	9:45	2			Х	Х				-	\dashv	+	-				+
	MW-L-030524		GW	Grab	9-91	:	3/5/2024	10:40	2	è		Х	Х	-	\dashv	+	-	\dashv	_	_				+
	LEC IAP-DUP-030524		GW	Grab	196	,	3/5/2024		2			X	Х		-	-	-	\dashv	\dashv	+				+
			-				-,,,		1			_	_		+	-	-	\dashv	+	_	-			+
			_													-	_	\dashv	_	_	-			+
								,																
Additional Instruction	ons from Pace®:	1				Collected By: (Printed Nam		Jason F	R. Frank	ks /		Custor	ner Ren	narks / S	pecial C	onditio	ons / Po	ssible F	lazards:					
/						Signature:		1	2	1		# Co	olers:		hermome	ter ID:		Correcti	ion Factor ((°C): Ot	bs. Temp. (*C)	Corrected 1	Temp. (°C)	On Ice
							0/00	-15	1	-	4			7	298	}		-0	7.5	13	3-W	13	-1	
Relinguished by/Compa	ny: (Signature)			Date/Time:		,	Received by/Company	y: (Signature)	-	Δ.	041	_			3/(10	10	630		ing Number:			
C/aggs	K Tranks	/ scs	- 0	03/06/2	024 / 16:30			6	, i	A	Pa (L_			514	12	4_	93	E 50					

Received by/Company: (Signature)

Received by/Company: (Signature)

Received by/Company: (Signature)

Date/Time:

Date/Time:

Date/Time:

Relinguished by/Company: (Signature)

Page: 1

[] FedEX [] UPS [] Other

of

1

Delivered by: [] In- Person [] Courier

Date/Time:

Date/Time:

In	iternal Transfer Cl	nain (of Custoo	dy —			···			*****									1	
Wo	orkorder: 60448404 Worldoort To	korder N	X Sample	ultiplier s Pre-Logged IACTIVE ASH	into eCC		Ce	rt. N	of Orig eeded Recei	i: [χ,		3/6/20					uested	I By:	<i>Pace</i> °
			Subcontra	2 - 4 2-20-20-20-20-20-20-20-20-20-20-20-20-20			Museudur	gyakiki	Nysagos:	1000		iffatys,	Rec	ueste	d Ana	alysis	Bijderece	<u> </u>	1988/64	langunga sagasa kesmala.
Pac 960 Len	ce Spiller ce Analytical Kansas 08 Loiret Blvd. nexa, KS 66219 one (913)599-5665		1638 Suites Greer	Analytical Pittst Roseytown Roas 2,3, & 4 nsburg, PA 156 e (724)850-5600	ad 01	Pres	served C	ontai	ñers	226/228 combined +QC	Radium 226	Radium 228								
Item	n Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HN03				Radium 2										LAB USE ONLY
1	MW-37-030424	PS	3/4/2024 14:55	60448404001	Water	2				Х	Х	Х							\top	-001
2	MW-38-030524	PS	3/5/2024 09:05	60448404002	Water	2				X	Х	Х		1.			\top	11		002
3	MW-39-030524	PS	3/5/2024 11:15	60448404003	Water	2		T		Х	Х	Х					\top			003
4	MW-40-030524	PS	3/5/2024 11:55	60448404004	Water	2				Х	Х	Х								004
5	MW-K-030524	PS	3/5/2024 09:45	60448404005	Water	2				Х	Х	Х								005
6	MW-L-030524	PS	3/5/2024 10:40	60448404006	Water	2				Х	Χ	Х								006
7	LEC IAP-DUP-030524	PS	3/5/2024 08:00	60448404007	Water	2				X	X	Х								007
1 2 3	nsfers Released By テオパ		Date/Time 3/7P4/		7			<u>3</u> ا	ate/Tim	0926			ple locat	ion: 60	0-R28	-S3	mment			
	vioi romperature on Receip		_ C Cus	stouy Sear 1	or ⟨N		Re	ceiv	ed on	ice	Y	or	<u>⟨N /</u>			Sa	mples	<u>intact</u>	itY)	or N

WO#: 30667222

Page 2

Thursday, March 07, 2024 10:21:18 AM

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

ENV-FRM-GBUR-0088 v07_Sample Condition Upon Recei

Effective Date: 01/04/2024

WO#:30667222

PM: MAR

Due Date: 03/29/24

CLIENT: PACE_60_LEKS

client Name: Pace Kansas						
Courier: Fed Ev Tups Tusps Tillent T] Comi	mercia	∐ □ Pa	ace 🗆 Other		Initial / Date
Tracking Number: <u>7146</u> 2375	7	855	8		Examined By	EN 318/24
Custody Seal on Cooler/Box Present:	s Z No)	Seals I	ntact: Yes (ZŃo Labeled By: Z Temped By: _	EST 3/8/24
				The state of the s		
Cooler Temperature: Observed Temp		·C	corre	ction Factor:	oc Final le	mp:°C
Temp should be above freezing to 6°C				pH paper Lot#	D.P.D. Resid	ual Chlorine Lot#
Comments:	Yes	No	NA	100293	/ B.F.B. Kesiu	adi Cilotine cot ii
Chain of Custody Present	,,,,			1.		
Chain of Custody Fresent Chain of Custody Filled Out:				2		
-Were client corrections present on COC						
Chain of Custody Relinquished				3.		
Sampler Name & Signature on COC:		- Service Company		4.		
Sample Labels match COC:	and the same of th			5.		
-Includes date/time/ID			L			
Matrix: WT						
Samples Arrived within Hold Time:				6.		
Short Hold Time Analysis (<72hr		مر		7.		
remaining):						
Rush Turn Around Time Requested:				8.		
Sufficient Volume:				9.		
Correct Containers Used:				10.		
-Pace Containers Used						
Containers Intact:				11.		
Orthophosphate field filtered:				12.		
Hex Cr Aqueous samples field filtered:				13.		
Organic Samples checked for dechlorination				14:		
Filtered volume received for dissolved tests:		,		15:		-
All containers checked for preservation:				16.		
exceptions: VOA, coliform, TOC, O&G, - Phenolics, Radon, non-aqueous matrix				PHZZ	,	
All containers meet method preservation requirements:				Initial when completed Lot# of added	Date/Time of Preservation	
8260C/D: Headspace in VOA Vials (> 6mm)		· · · · · · · · · · · · · · · · · · ·		Preservative 17.		
624.1: Headspace in VOA Vials (0mm)			-	18.		
•						
Radon: Headspace in RAD Vials (0mm)			/	19.		
Trip Blank Present:					tody seal present?	
Rad Samples Screened <.05 mrem/hr.	1/			initial when Signature Completed	Date: 3-8-24	Survey Meter SN: 35014380
Comments:				1	·	·
Note: For NC compliance samples with discrepancies, a cop	y of this	form m	ust be	sent to the DEHNR Cert	ification office.	

PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Page 23 of 2. SLC **3/21/2**H

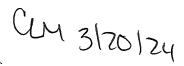
Quality Control Sample Performance Assessment

Ra-226 Test: CLM Analyst: 3/12/2024 Date: 78067 DW Batch ID: Matrix:

Method Blank Assessment MB Sample ID 3186143 MB concentration: 0.315 M/B Counting Uncertainty: 0.265 MB MDC: 0.332 MB Numerical Performance Indicator: 2.33 MB Status vs Numerical Indicator: N/A MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS78067	LCSD78067
Count Date:	3/20/2024	3/20/2024
Spike I.D.:	23-063	23-063
Spike Concentration (pCi/mL):	32.302	32.302
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.654	0.650
Target Conc. (pCi/L, g, F):	4.937	4.969
Uncertainty (Calculated):	0.232	0.234
Result (pCi/L, g, F):	5.979	4.615
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.081	1.001
Numerical Performance Indicator:	1.85	-0.67
Percent Recovery:	121.11%	92.88%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	133%	133%
Lower % Recovery Limits:	73%	73%

Duplicate Sample Assessment		
Dupiloate dample Assessment		
Sample I.D.: Duplicate Sample I.D. Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	1.081 4.615	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL?		
Duplicate Numerical Performance Indicator:		gar isaa maa ga
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	26.38%	
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:	Pass	
% RPD Limit:	32%	l


Analyst Must Manually Enter All Fields Highlighted in Yellow.

١	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Ì	Sample Collection Date:		1
١	Sample I.D.		t en en g
١	Sample MS I.D.		l i di di
ı	Sample MSD I.D.		t distriction
١	Spike I.D.:	Ì	1
١	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Ì	!
	Spike Volume Used in MS (mL):		1
1	Spike Volume Used in MSD (mL):	Ì	ţ
ı	MS Aliquot (L, g, F):	l	1
ı	MS Target Conc.(pCi/L, g, F):	İ	(
Ì	MSD Aliquot (L, g, F):	İ	I
١	MSD Target Conc. (pCi/L, g, F):	İ	ļ
. 1	MS Spike Uncertainty (calculated):	ì	Į.
۱	MSD Spike Uncertainty (calculated):	ì	•
۱	Sample Result:	i i	1
	Sample Result Counting Uncertainty (pCi/L, g, F):	ì	
۱	Sample Matrix Spike Result:	ì	
H	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1	
H	Sample Matrix Spike Duplicate Result:	·	
	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	·	
۱	MS Numerical Performance Indicator:	'	
	MSD Numerical Performance Indicator:	'	1
l	MS Percent Recovery:	'	1
١	MSD Percent Recovery:	1	1
١	MS Status vs Numerical Indicator:	1	
١	MSD Status vs Numerical Indicator:	1	
L	MS Status vs Recovery:	1	
۱	MSD Status vs Recovery:	1	
١	MS/MSD Upper % Recovery Limits:	1	1
1	MS/MSD Lower % Recovery Limits:	1	L

M	latrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228
ZPC
3/15/2024
78068
WT

Method Blank Assessme	nt	
	MB Sample ID	3186148
	MB concentration:	0.523
	M/B 2 Sigma CSU:	0.331
ł .	MB MDC:	0.614
	MB Numerical Performance Indicator:	3.09
	MB Status vs Numerical Indicator:	Fail*
	MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS78068	LCSD78068
Count Date:	3/20/2024	3/20/2024
Spike I.D.:	23-043	23-043
Decay Corrected Spike Concentration (pCi/mL):	37.429	37.429
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.816	0.819
Target Conc. (pCi/L, g, F):	4.588	4.570
Uncertainty (Calculated):	0.225	0.224
Result (pCi/L, g, F):	4.139	4.339
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.966	1.000
Numerical Performance Indicator:	-0.89	-0.44
Percent Recovery:	90.22%	94.96%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		1
Sample I.D.: Duplicate Sample I.D. Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	LCS78068 LCSD78068 4.139 0.966 4.339 1.000	Enter Duplicate sample IDs if other than LCS/LCSD in the space below
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	NO -0.283 5.12%	
Duplicate Status vs Numerical Indicator; Duplicate Status vs RPD: W RPD L imitr	Pass Pass 36%	

MS/MSD 1	MS/MSD 2
:	
	MS/MSD 1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	:
Sample MSD I.D.	:
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	:
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	!
Duplicate Numerical Performance Indicator:	;
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	:
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

*If the lowest activity sample in this batch is greater than ten times the blank value, the blank

M3/21/29

VAL 3/21/24

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

March 19, 2024

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy Laura Hines, Evergy, Inc. Shannon Hughes, Evergy Adam Irvin, Evergy Samantha Kaney, Haley & Aldrich

Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17

Utah Certification #: KS000212022-13

SAMPLE SUMMARY

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60448407001	MW-37-030424	Water	03/04/24 14:55	03/06/24 16:30
60448407002	MW-38-030524	Water	03/05/24 09:05	03/06/24 16:30
60448407003	MW-39-030524	Water	03/05/24 11:15	03/06/24 16:30
60448407004	MW-40-030524	Water	03/05/24 11:55	03/06/24 16:30
60448407005	MW-K-030524	Water	03/05/24 09:45	03/06/24 16:30
60448407006	MW-L-030524	Water	03/05/24 10:40	03/06/24 16:30
60448407007	LEC IAP-DUP-030524	Water	03/05/24 08:00	03/06/24 16:30

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60448407001	MW-37-030424	EPA 200.7		3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K
0448407002	MW-38-030524	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K
0448407003	MW-39-030524	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K
0448407004	MW-40-030524	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K
0448407005	MW-K-030524	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K
0448407006	MW-L-030524	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K
0448407007	LEC IAP-DUP-030524	EPA 200.7	JXD	3	PASI-K

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL	4	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: March 19, 2024

General Information:

7 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 885867

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60448407001,60448408003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3506497)
 - Calcium
- MS (Lab ID: 3506499)
 - Calcium
- MSD (Lab ID: 3506498)
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: March 19, 2024

General Information:

7 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: March 19, 2024

General Information:

7 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 886732

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- LEC IAP-DUP-030524 (Lab ID: 60448407007)
 - Cobalt, Total Recoverable
- MW-39-030524 (Lab ID: 60448407003)
 - Cobalt, Total Recoverable
- MW-40-030524 (Lab ID: 60448407004)
 - Cobalt, Total Recoverable
- MW-L-030524 (Lab ID: 60448407006)
 - Cobalt, Total Recoverable

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: March 19, 2024

General Information:

7 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 885906

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 3506648)
 - Total Dissolved Solids

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: March 19, 2024

General Information:

7 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- LEC IAP-DUP-030524 (Lab ID: 60448407007)
- MW-37-030424 (Lab ID: 60448407001)
- MW-38-030524 (Lab ID: 60448407002)
- MW-39-030524 (Lab ID: 60448407003)
- MW-40-030524 (Lab ID: 60448407004)
- MW-K-030524 (Lab ID: 60448407005)
- MW-L-030524 (Lab ID: 60448407006)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: March 19, 2024

General Information:

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 886270

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60448345003,60448345004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3508386)
 - Chloride
 - Sulfate
- MS (Lab ID: 3508388)
 - Chloride
 - Sulfate
- MSD (Lab ID: 3508387)
 - Chloride
 - Sulfate

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: MW-37-030424	Lab ID: 604	48407001	Collected: 03/04/2	4 14:55	Received: 03	/06/24 16:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.090	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:14	7440-39-3	
Boron, Total Recoverable	1.6	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:14	7440-42-8	
Calcium, Total Recoverable	239	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:14	7440-70-2	M1
6010 MET ICP	Analytical Met	Analytical Method: EPA 6010 Preparation Method: EPA 3010						
	Pace Analytica	Pace Analytical Services - Kansas City						
Lithium, Total Recoverable	0.030	mg/L	0.010	1	03/11/24 11:53	03/14/24 15:46	7439-93-2	
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8							
	Pace Analytica	Pace Analytical Services - Kansas City						
Arsenic, Total Recoverable	0.0076	mg/L	0.0010	1	03/15/24 10:27	03/18/24 10:58	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/15/24 10:27	03/18/24 10:58	7440-48-4	
Molybdenum, Total Recoverable	0.070	mg/L	0.0010	1	03/15/24 10:27	03/18/24 10:58	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1010	mg/L	13.3	1		03/08/24 14:55		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.0	Std. Units	0.10	1		03/08/24 10:40		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
-	Pace Analytica	al Services -	Kansas City					
Bromide	<1.0	mg/L	1.0	1		03/13/24 12:36	24959-67-9	
Chloride	57.7	mg/L	10.0	10		03/15/24 14:50	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/13/24 12:36	16984-48-8	
Sulfate	60.5	mg/L	10.0	10		03/15/24 14:50	14808-79-8	

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: MW-38-030524	Lab ID: 604	48407002	Collected: 03/05/2	4 09:05	Received: 03	3/06/24 16:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.053	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:19	7440-39-3	
Boron, Total Recoverable	3.5	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:19	7440-42-8	
Calcium, Total Recoverable	166	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:19	7440-70-2	
6010 MET ICP	Analytical Met	Analytical Method: EPA 6010 Preparation Method: EPA 3010						
	Pace Analytica	Pace Analytical Services - Kansas City						
Lithium, Total Recoverable	0.052	mg/L	0.010	1	03/11/24 11:53	03/14/24 15:53	7439-93-2	
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8							
	Pace Analytical Services - Kansas City							
Arsenic, Total Recoverable	0.018	mg/L	0.0010	1	03/15/24 10:27	03/18/24 11:06	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/15/24 10:27	03/18/24 11:06	7440-48-4	
Molybdenum, Total Recoverable	0.065	mg/L	0.0010	1	03/15/24 10:27	03/18/24 11:06	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1060	mg/L	20.0	1		03/08/24 14:56	5	
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.6	Std. Units	0.10	1		03/08/24 10:46	6	H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
•	Pace Analytica	al Services -	Kansas City					
Bromide	<1.0	mg/L	1.0	1		03/13/24 13:02	2 24959-67-9	
Chloride	99.3	mg/L	10.0	10		03/15/24 15:03	16887-00-6	
Fluoride	2.8	mg/L	0.20	1		03/13/24 13:02	16984-48-8	
Sulfate	168	mg/L	10.0	10		03/15/24 15:03	3 14808-79-8	

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: MW-39-030524	Lab ID: 604	148407003	Collected: 03/05/2	24 11:15	Received: 03	3/06/24 16:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	thod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.029	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:21	7440-39-3	
Boron, Total Recoverable	4.5	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:21	7440-42-8	
Calcium, Total Recoverable	474	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:21	7440-70-2	
6010 MET ICP	Analytical Met	Analytical Method: EPA 6010 Preparation Method: EPA 3010						
	Pace Analytic	Pace Analytical Services - Kansas City						
Lithium, Total Recoverable	0.048	mg/L	0.010	1	03/11/24 11:53	03/14/24 15:55	7439-93-2	
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8							
	Pace Analytical Services - Kansas City							
Arsenic, Total Recoverable	0.011	mg/L	0.0050	5	03/15/24 10:27	03/18/24 11:08	7440-38-2	
Cobalt, Total Recoverable	<0.0050	mg/L	0.0050	5	03/15/24 10:27	03/18/24 11:08	7440-48-4	D3
Molybdenum, Total Recoverable	0.15	mg/L	0.0050	5	03/15/24 10:27	03/18/24 11:08	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1970	mg/L	66.7	1		03/08/24 14:56		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytic	al Services -	Kansas City					
oH at 25 Degrees C	7.1	Std. Units	0.10	1		03/08/24 10:54		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
•	Pace Analytic	al Services -	Kansas City					
Bromide	1.7	mg/L	1.0	1		03/13/24 13:27	24959-67-9	
Chloride	350	mg/L	200	200		03/13/24 13:40	16887-00-6	
Fluoride	1.8	mg/L	0.20	1		03/13/24 13:27	16984-48-8	
Sulfate	1590	mg/L	200	200		03/13/24 13:40	14808-79-8	

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: MW-40-030524	Lab ID: 604	148407004	Collected: 03/05/2	24 11:55	Received: 03	ived: 03/06/24 16:30 Matrix: Water					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: EF	PA 200.7						
	Pace Analytic	al Services -	Kansas City								
Barium, Total Recoverable	0.034	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:23	7440-39-3				
Boron, Total Recoverable	2.9	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:23	7440-42-8				
Calcium, Total Recoverable	440	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:23	7440-70-2				
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Metl	nod: EP	A 3010						
	Pace Analytic	al Services -	Kansas City								
Lithium, Total Recoverable	0.051	mg/L	0.010	1	03/11/24 11:53	03/14/24 15:57	7439-93-2				
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8						
	Pace Analytic	Pace Analytical Services - Kansas City									
Arsenic, Total Recoverable	0.014	mg/L	0.0020	2	03/15/24 10:27	03/18/24 11:10	7440-38-2				
Cobalt, Total Recoverable	<0.0020	mg/L	0.0020	2	03/15/24 10:27	03/18/24 11:10	7440-48-4	D3			
Molybdenum, Total Recoverable	0.056	mg/L	0.0020	2	03/15/24 10:27	03/18/24 11:10	7439-98-7				
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C								
	Pace Analytic	al Services -	Kansas City								
Total Dissolved Solids	1850	mg/L	66.7	1		03/08/24 14:57					
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B								
•	Pace Analytic	al Services -	Kansas City								
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/08/24 11:00		H6			
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0								
-	Pace Analytic	al Services -	Kansas City								
Bromide	1.6	mg/L	1.0	1		03/13/24 13:53	24959-67-9				
Chloride	284	mg/L	200	200		03/13/24 14:32	16887-00-6				
Fluoride	1.6	mg/L	0.20	1		03/13/24 13:53	16984-48-8				
Sulfate	1260	mg/L	200	200		03/13/24 14:32	14808-79-8				

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: MW-K-030524	Lab ID: 604	48407005	Collected: 03/05/2	24 09:45	Received: 03	3/06/24 16:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.046	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:25	7440-39-3	
Boron, Total Recoverable	1.8	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:25	7440-42-8	
Calcium, Total Recoverable	192	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:25	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.050	mg/L	0.010	1	03/11/24 11:53	03/14/24 15:59	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.073	mg/L	0.0010	1	03/15/24 10:27	03/18/24 11:14	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/15/24 10:27	03/18/24 11:14	7440-48-4	
Molybdenum, Total Recoverable	0.022	mg/L	0.0010	1	03/15/24 10:27	03/18/24 11:14	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1250	mg/L	20.0	1		03/08/24 14:57		
1500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
oH at 25 Degrees C	7.7	Std. Units	0.10	1		03/08/24 10:48		H6
800.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
	Pace Analytica	al Services -	Kansas City					
Bromide	<1.0	mg/L	1.0	1		03/13/24 14:44	24959-67-9	
Chloride	117	mg/L	10.0	10		03/15/24 15:15	16887-00-6	
Fluoride	2.7	mg/L	0.20	1		03/13/24 14:44	16984-48-8	
Sulfate	157	mg/L	10.0	10		03/15/24 15:15	14808-79-8	

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: MW-L-030524	Lab ID: 604	148407006	Collected: 03/05/2	24 10:40	Received: 03	/06/24 16:30 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	thod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.029	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:33	7440-39-3	
Boron, Total Recoverable	2.4	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:33	7440-42-8	
Calcium, Total Recoverable	429	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:33	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.089	mg/L	0.010	1	03/11/24 11:53	03/14/24 16:43	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	00.8 Preparation Met	thod: EF	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Arsenic, Total Recoverable	0.029	mg/L	0.0030	3	03/15/24 10:27	03/18/24 11:16	7440-38-2	
Cobalt, Total Recoverable	< 0.0030	mg/L	0.0030	3	03/15/24 10:27	03/18/24 11:16	7440-48-4	D3
Molybdenum, Total Recoverable	0.048	mg/L	0.0030	3	03/15/24 10:27	03/18/24 11:16	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1770	mg/L	100	1		03/08/24 14:57		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytic	al Services -	Kansas City					
oH at 25 Degrees C	7.3	Std. Units	0.10	1		03/08/24 10:49		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
-	Pace Analytic	al Services -	Kansas City					
Bromide	2.0	mg/L	1.0	1		03/13/24 15:10	24959-67-9	
Chloride	452	mg/L	200	200		03/13/24 15:23		
Fluoride	2.6	mg/L	0.20	1		03/13/24 15:10	16984-48-8	
Sulfate	1490	mg/L	200	200		03/13/24 15:23	14808-79-8	

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Sample: LEC IAP-DUP-030524	Lab ID: 604	148407007	Collected: 03/05/2	24 08:00	Received: 03	3/06/24 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	thod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.047	mg/L	0.0050	1	03/08/24 10:15	03/18/24 12:35	7440-39-3	
Boron, Total Recoverable	1.8	mg/L	0.10	1	03/08/24 10:15	03/18/24 12:35	7440-42-8	
Calcium, Total Recoverable	199	mg/L	0.20	1	03/08/24 10:15	03/18/24 12:35	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.050	mg/L	0.010	1	03/11/24 11:53	03/14/24 16:45	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	00.8 Preparation Met	thod: EF	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Arsenic, Total Recoverable	0.071	mg/L	0.0020	2	03/15/24 10:27	03/18/24 11:18	7440-38-2	
Cobalt, Total Recoverable	<0.0020	mg/L	0.0020	2	03/15/24 10:27	03/18/24 11:18	7440-48-4	D3
Molybdenum, Total Recoverable	0.020	mg/L	0.0020	2	03/15/24 10:27	03/18/24 11:18	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1240	mg/L	20.0	1		03/08/24 14:58		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytic	al Services -	Kansas City					
oH at 25 Degrees C	7.7	Std. Units	0.10	1		03/08/24 10:44		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
-	Pace Analytic	al Services -	Kansas City					
Bromide	<1.0	mg/L	1.0	1		03/13/24 15:36	24959-67-9	
Chloride	147	mg/L	10.0	10		03/15/24 15:28	16887-00-6	
Fluoride	2.7	mg/L	0.20	1		03/13/24 15:36	16984-48-8	
Sulfate	173	mg/L	10.0	10		03/15/24 15:28	14808-79-8	

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

QC Batch: 885867 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

METHOD BLANK: 3506495 Matrix: Water

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

Danamatas	Llaita	Blank	Reporting	A I I	Overlitie ne
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	< 0.0050	0.0050	03/18/24 12:10	
Boron	mg/L	<0.10	0.10	03/18/24 12:10	
Calcium	mg/L	< 0.20	0.20	03/18/24 12:10	

LABORATORY CONTROL SAMPLE: 3506496 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Barium 1 1.0 102 85-115 mg/L mg/L 0.95 Boron 95 85-115 1 10 101 Calcium mg/L 10.1 85-115

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3506	497		3506498							
			MS	MSD								
		60448407001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.090	1	1	1.1	1.1	104	103	70-130	0	20	
Boron	mg/L	1.6	1	1	2.7	2.7	104	104	70-130	0	20	
Calcium	mg/L	239	10	10	255	256	160	175	70-130	1	20	M1

MATRIX SPIKE SAMPLE:	3506499						
		60448408003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	27.6 ug/L	1	1.0	97	70-130	
Boron	mg/L	4350 ug/L	1	5.2	89	70-130	
Calcium	mg/L	472	10	469	-32	70-130 N	11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

QC Batch: 886732 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

METHOD BLANK: 3510225 Matrix: Water

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Arsenic mg/L < 0.0010 0.0010 03/18/24 10:54 <0.0010 Cobalt mg/L 0.0010 03/18/24 10:54 Molybdenum mg/L <0.0010 0.0010 03/18/24 10:54

LABORATORY CONTROL SAMPLE: 3510226

Date: 03/19/2024 01:13 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	0.04	0.040	99	85-115	
Cobalt	mg/L	0.04	0.040	99	85-115	
Molybdenum	mg/L	0.04	0.038	95	85-115	

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 3510	227		3510228							
			MS	MSD								
		60448407005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.073	0.04	0.04	0.11	0.11	101	96	70-130	2	20	
Cobalt	mg/L	< 0.0010	0.04	0.04	0.039	0.039	98	97	70-130	1	20	
Molybdenum	mg/L	0.022	0.04	0.04	0.063	0.062	104	101	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

QC Batch: 886067 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

METHOD BLANK: 3507408 Matrix: Water

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Lithium
 mg/L
 <0.010</td>
 0.010
 03/14/24 15:41

LABORATORY CONTROL SAMPLE: 3507409

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium 0.96 96 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3507410 3507411

MS MSD

60448407003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.048 105 20 Lithium mg/L 1.1 1.1 101 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

QC Batch: 885906 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

METHOD BLANK: 3506645 Matrix: Water

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/08/24 14:55

LABORATORY CONTROL SAMPLE: 3506646

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L **Total Dissolved Solids** 1000 977 98 80-120

·

SAMPLE DUPLICATE: 3506647

60448407001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1010 **Total Dissolved Solids** 1010 0 mg/L 10

SAMPLE DUPLICATE: 3506648

Date: 03/19/2024 01:13 PM

60448487001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 468 10 D6 mg/L 418 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

QC Batch: 885884 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

SAMPLE DUPLICATE: 3506543

Date: 03/19/2024 01:13 PM

60448407001 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.0 pH at 25 Degrees C 7.0 5 H6 Std. Units 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

QC Batch: 886270 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

METHOD BLANK: 3508384 Matrix: Water

Associated Lab Samples: 60448407001, 60448407002, 60448407003, 60448407004, 60448407005, 60448407006, 60448407007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	03/13/24 09:17	
Chloride	mg/L	<1.0	1.0	03/13/24 09:17	
Fluoride	mg/L	<0.20	0.20	03/13/24 09:17	
Sulfate	mg/L	<1.0	1.0	03/13/24 09:17	

LABORATORY CONTROL SAMPLE:	3508385	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		4.9	97	90-110	
Chloride	mg/L	5	4.7	93	90-110	
Fluoride	mg/L	2.5	2.3	91	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3508		3508387								
		60448345003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Bromide	mg/L	ND	100	100	97.1	97.7	89	90	80-120	1	15	
Chloride	mg/L	35.6	100	100	112	112	76	77	80-120	1	15	M1
Fluoride	mg/L	ND	50	50	46.6	47.6	93	95	80-120	2	15	
Sulfate	mg/L	180	100	100	190	188	10	8	80-120	1	15	M1

MATRIX SPIKE SAMPLE:	3508388						
		60448345004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	ND	100	105	91	80-120	
Chloride	mg/L	1320	1000	2950	163	80-120 N	Л1
Fluoride	mg/L	ND	50	46.0	86	80-120	
Sulfate	mg/L	238	100	399	161	80-120 N	Л1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/19/2024 01:13 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60448407

Date: 03/19/2024 01:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60448407001	MW-37-030424	EPA 200.7	885867	EPA 200.7	885939
60448407002	MW-38-030524	EPA 200.7	885867	EPA 200.7	885939
0448407003	MW-39-030524	EPA 200.7	885867	EPA 200.7	885939
0448407004	MW-40-030524	EPA 200.7	885867	EPA 200.7	885939
0448407005	MW-K-030524	EPA 200.7	885867	EPA 200.7	885939
0448407006	MW-L-030524	EPA 200.7	885867	EPA 200.7	885939
0448407007	LEC IAP-DUP-030524	EPA 200.7	885867	EPA 200.7	885939
0448407001	MW-37-030424	EPA 3010	886067	EPA 6010	886142
0448407002	MW-38-030524	EPA 3010	886067	EPA 6010	886142
0448407003	MW-39-030524	EPA 3010	886067	EPA 6010	886142
0448407004	MW-40-030524	EPA 3010	886067	EPA 6010	886142
0448407005	MW-K-030524	EPA 3010	886067	EPA 6010	886142
0448407006	MW-L-030524	EPA 3010	886067	EPA 6010	886142
0448407007	LEC IAP-DUP-030524	EPA 3010	886067	EPA 6010	886142
0448407001	MW-37-030424	EPA 200.8	886732	EPA 200.8	886829
0448407002	MW-38-030524	EPA 200.8	886732	EPA 200.8	886829
0448407003	MW-39-030524	EPA 200.8	886732	EPA 200.8	886829
0448407004	MW-40-030524	EPA 200.8	886732	EPA 200.8	886829
0448407005	MW-K-030524	EPA 200.8	886732	EPA 200.8	886829
0448407006	MW-L-030524	EPA 200.8	886732	EPA 200.8	886829
0448407007	LEC IAP-DUP-030524	EPA 200.8	886732	EPA 200.8	886829
0448407001	MW-37-030424	SM 2540C	885906		
0448407002	MW-38-030524	SM 2540C	885906		
0448407003	MW-39-030524	SM 2540C	885906		
0448407004	MW-40-030524	SM 2540C	885906		
0448407005	MW-K-030524	SM 2540C	885906		
0448407006	MW-L-030524	SM 2540C	885906		
0448407007	LEC IAP-DUP-030524	SM 2540C	885906		
0448407001	MW-37-030424	SM 4500-H+B	885884		
0448407002	MW-38-030524	SM 4500-H+B	885884		
0448407003	MW-39-030524	SM 4500-H+B	885884		
0448407004	MW-40-030524	SM 4500-H+B	885884		
0448407005	MW-K-030524	SM 4500-H+B	885884		
0448407006	MW-L-030524	SM 4500-H+B	885884		
0448407007	LEC IAP-DUP-030524	SM 4500-H+B	885884		
0448407001	MW-37-030424	EPA 300.0	886270		
0448407002	MW-38-030524	EPA 300.0	886270		
0448407003	MW-39-030524	EPA 300.0	886270		
0448407004	MW-40-030524	EPA 300.0	886270		
0448407005	MW-K-030524	EPA 300.0	886270		
0448407006	MW-L-030524	EPA 300.0	886270		
0448407007	LEC IAP-DUP-030524	EPA 300.0	886270		

WO#:60448407

DC#_Title: ENV-FRM-LENE-0009_Sample Col

Revision: 2	ective Date: 01/12/2022	Issued By: Lenexa	-
Client Name: Everav Kungas (en	ml	-	lii.
	PEX □ ECI □ Pace	Xroads Client Other	
Tracking #: Pac	ce Shipping Label Used? Y	es □ No 🖁	
Custody Seal on Cooler/Box Present: Yes □ No □	Seals intact: Yes 🖹 N	lo 🗆	
Packing Material: Bubble Wrap D Bubble Bags D Type o	Foam D	None ☐ Other ☐	
Cooler Temperature (°C): As-read 26 Corr. Fact	• 7	Date and initials of per	son
Temperature should be above freezing to 6°C	tor <u>-0 · 7</u> Corrected <u>~</u>	examining contents:	KI .
Chain of Custody present:	Ūyes □No □N/A	1140	
Chain of Custody relinquished:	Qves □No □N/A		
Samples arrived within holding time:	Maryes □No □N/A		
Short Hold Time analyses (<72hr):	□Yes DNo □N/A		
Rush Turn Around Time requested:	□Yes UNo □N/A		
Sufficient volume:	Ves □No □N/A		
Correct containers used:	1 Yes □No □N/A		
Pace containers used:	res □No □N/A		
Containers intact:	10 Yes □No □N/A		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □MA		
Filtered volume received for dissolved tests?	□Yes □No ┗N/A		
Sample labels match COC: Date / time / ID / analyses	☐ves ☐No ☐N/A		
Samples contain multiple phases? Matrix: WT	□Yes tho □N/A		
Containers requiring pH preservation in compliance?	Ves □No □N/A List sa	ample IDs, volumes, lot #'s of preservative	e and the
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#:	1200002	time added.	
Cyanide water sample checks:	. 000007		
Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Trip Blank present:	□Yes □No 【M/A		
Headspace in VOA vials (>6mm):	□Yes □No DDM/A		
Samples from USDA Regulated Area: State:	□Yes □No 【DN/A		
Additional labels attached to 5035A / TX1005 vials in the field?	P □Yes □No ÛN/A		
Client Notification/ Resolution: Copy COC to	Client? Y / N F	Field Data Required? Y / N	
Person Contacted: Date/T	ime:		
Comments/ Resolution:			
roject Manager Review:	Date:		
_			

✓ Pace® Location Reques	sted (Citv/State)):									1													
Pace Analytical Kansas 9608 Loiret Blvd., Lenexa, K		,	(Analytical I								個	AB USE	ONLY	- Affi	x Work	(order/	/Login	Label He	⊧re		
Company Name: Evergy Kansas Central, I	nc.			Contact/Report T	o: Jake Hu	mphrev					l	12.0												
Street Address: 818 S Kansas Avenue, To	opeka, KS 66612			Phone #:	(913)63							F												
				E-Mail:		mphrey@evergy.	.com								9	can O	R Co	de for	inetru	otions				
				Cc E-Mail:		haleyaldrich.co						Œ W.	NAME OF A	2.72	·	can Q		ue ioi	II ISU U	CHOITS				
Customer Project #:				0		•					Specify Container Size **										*Container S	Size: (1) 1L, (2) 5	00ml (3) 250	ml (4)
Project Name: LEC INACTIVE ASH PONE	os			Invoice To:	Lawren	e Center					3	2	3	Specify	Contain	lei Size	_		_	1	.25mL, (5) 100	OmL, (6) 40mL v	ial, (7) EnCore	
				Invoice E-Mail:	evergya	p@onlinecapture	ecenter.con	n			Ť			v Contai	TerraCore, (9) 90mL, (10) Other Container Preservative Type***									
Site Collection Info/Facility ID (as applicable):				Purchase Order #		000095397					2	1	1	y contai	1101 1 70.	CIVALIV	Турс	-r				ive Types: (1) No II, (5) NaOH, (6)		
Evergy Lawrence Fre				applicable):							-			Anal	ysis Rec	uested				N		iod, Thiosulfate,		
Evergy Lawrence Ene	rgy Center			Quote #:													T			— F	Proj. Mg			_
Time Zone Collected: [] AK [] PT [County / State or	igin of sample(s): Kansas					В,Са,Ва 200.8 Аѕ,Со,Мо 6010 Li										Alice S			φę		
Data Deliverables:	Regulatory Progra	am (DW,	RCRA, et	c.) as applicable:	Reportab	le [] Yes [X] No				9	<u>w</u>									AcctNum	n / Client ID:		1
[] Level II [] Level IV		Due	h (Dro a	pproval require	d).	Inu mur	D # 1404/ D		- P-V		ပိ	l Sign								3	A L			ider
f. Troug	[] Same Day			Day [] 3 Day [DW PWS	ID # or WW Pe	rmit # as	applicable		As,	Total Dissolved Solids			- 1					اة	Table #:			Jance
[] EQUIS	Date Results					Field Filtered (if a	oplicable): [] Yes	[X] No		8.00	\ o (8				1			1	Profile /	Template:		- 1월 1
[] Other	Requested:					Analysis:					a 2(Dis	CI,F,SO4							-	9655	remplate.		02-6
* Matrix Codes (Insert in Matrix box below): Drink Bioassay (B), Vanor (V), Surface Water (SW) Sedin	king Water (DW), G	round W	ater (GW), Waste Water (W	/W), Product (I	P), Soil/Solid (SS), O	ll (OL), Wipe	(WP), Tis	sue (TS),		a,B	tal	5						- 1		Prelog /	Bottle Ord. II	D:	1 5
Bioassay (B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (SL), Caulk (Cl			Comp /	Composit	10,100,100,000,000	Collected or Cor	nnosite End	#	Res. Ch	lorino	В	15	300.0						- 1	L	EZ 308	30046		vatio
Customer Sample ID		Viatrix *	Grab	Date	Time	Date	Time	Cont.	Results	Units	200.7	2540C	рН, 3						- 1		Sar	mple Comr	nent	Preservation non-conformance identified for
MW-37-030424		GW	Grab	-	-	3/4/2024	14:55	3	results -	·	X	X	X				+	+	+	+	6011	481	In 7	₽
MW-38-030524		GW	Grab	2	2	3/5/2024	9:05	3			X	Х	X			+		+		+	W9	70)	07	\vdash
MW-39-030524		GW	Grab					-	_		_		-		-	+	+	+	-	+				┾
		_				3/5/2024	11:15	3		i.	Х	Х	Х		-	-	+	_	4	\dashv				\vdash
MW-40-030524		GW	Grab			3/5/2024	11:55	3	- 2	-	Х	Х	Х		_		-		4	4				\perp
MW-K-030524		GW	Grab		-	3/5/2024	9:45	3	*		Х	Х	Х			_								L
MW-L-030524		GW	Grab	-	-	3/5/2024	10:40	3	5	:	Х	Х	Х											
LEC IAP-DUP-030524		GW	Grab	=	-	3/5/2024		3	3	3	Х	Х	x											
																								T
														1	-		1		1	\exists				H
															-		+	+		+				\vdash
Additional Instructions from Pace®:					Collected By:		l	ļ			Custor	ner Ren	narks / S	pecial Co	ndition	s / Possi	ible H:	azards:						1
					(Printed Nam		Jason F	R. Fran	(S							_ , . 033								
					Signature:	Jam &	1	6	3		# Cod	olers:		hermome			orrectio	on Factor (Obs. Te	(°C)	Corrected Tel	mp- (°C)	On Ice:
belieful the devicements beginning Date/				024 / 16:30	Received by/Company: (Sign				TAI	246				Date/Time:				630	_	racking N				
1/ 6/			-,, -			I.		-	//		-			01	· ~									

Received by/Company: (Signature)

Received by/Company: (Signature)

Received by/Company: (Signature)

Date/Time:

Date/Time:

Date/Time:

Redinquished by/Company: (Signature)

Page: 1 of

Delivered by: [] In- Person [] Courier

[] FedEX [] UPS [] Other

1

Date/Time:

Date/Time:

Date/Time:

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

May 15, 2024

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on May 13, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665 PM Lab Management

alice Spiller

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073

Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13

SAMPLE SUMMARY

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60452788001	MW-39	Water	05/13/24 11:30	05/13/24 16:50	
60452788002	MW-40	Water	05/13/24 12:05	05/13/24 16:50	
60452788003	MW-L	Water	05/13/24 10:55	05/13/24 16:50	

SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory		
60452788001	MW-39	EPA 200.8	JGP	1	PASI-K		
60452788002	MW-40	EPA 200.8	JGP	1	PASI-K		
60452788003	MW-L	EPA 200.8	JGP	1	PASI-K		

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: May 15, 2024

General Information:

3 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Date: 05/15/2024 02:44 PM

Sample: MW-39 Lab ID: 60452788001 Collected: 05/13/24 11:30 Received: 05/13/24 16:50 Matrix: Water

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8

Pace Analytical Services - Kansas City

Cobalt, Total Recoverable **0.0011** mg/L 0.0010 1 05/14/24 15:10 05/15/24 09:24 7440-48-4

05/14/24 15:10 05/15/24 09:33 7440-48-4

ANALYTICAL RESULTS

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Cobalt, Total Recoverable

Date: 05/15/2024 02:44 PM

Sample: MW-40 Lab ID: 60452788002 Collected: 05/13/24 12:05 Received: 05/13/24 16:50 Matrix: Water DF CAS No. **Parameters** Results Units Report Limit Prepared Analyzed Qual 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Kansas City

0.0010

mg/L

<0.0010

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Date: 05/15/2024 02:44 PM

 Sample: MW-L
 Lab ID: 60452788003
 Collected: 05/13/24 10:55
 Received: 05/13/24 16:50
 Matrix: Water

 Parameters
 Results
 Units
 Report Limit
 DF
 Prepared
 Analyzed
 CAS No.
 Qual

 200.8 MET ICPMS
 Analytical Method: EPA 200.8
 Preparation Method: EPA 200.8

Pace Analytical Services - Kansas City

Cobalt, Total Recoverable <0.0010 mg/L 0.0010 1 05/14/24 15:10 05/15/24 09:35 7440-48-4

QUALITY CONTROL DATA

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Date: 05/15/2024 02:44 PM

QC Batch: 894356 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452788001, 60452788002, 60452788003

METHOD BLANK: 3539403 Matrix: Water

Associated Lab Samples: 60452788001, 60452788002, 60452788003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Cobalt mg/L <0.0010 0.0010 05/15/24 09:21

LABORATORY CONTROL SAMPLE: 3539404

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Cobalt mg/L 0.04 0.042 105 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3539405 3539406

MS MSD

60452788001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 0.0011 0.042 0.043 101 20 Cobalt mg/L 0.04 0.04 104 70-130 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 05/15/2024 02:44 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH PONDS

Pace Project No.: 60452788

Date: 05/15/2024 02:44 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60452788001	MW-39	EPA 200.8	894356	EPA 200.8	894444
60452788002	MW-40	EPA 200.8	894356	EPA 200.8	894444
60452788003	MW-L	EPA 200.8	894356	EPA 200.8	894444

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample C

WO#:60452788

	anning saver	Revision: 2	Effective Date: 01/	12/2022	ISSUEM Dy. LETIENA	
Client Nar	ne: Fi	veron/Centra	L			
Courier:	FedEx □ UPS	77		□ Pace	e □ Xroads □ Client 🗗 Other □	
Tracking #:		0 - 12 - 1	 Pace Shipping Labe 	el Used? Y	es 🗆 No 🗗	
	al on Cooler/Box	Present: Yes N	Seals intact:		No □	
Packing Mat					None ☐ Other □	
Thermomete	1	10 0		ie None		
		As-read 14 Co	rr. Factor O. O	orrected	Date and initials of perso examining contents:	n
•	hould be above free		Tructor g		HF 5/13	3
	tody present:		☐ es ☐ No	□n/a		
			1 2√es □No	□N/A		
70	tody relinquished:		9	□N/A		
Samples arriv	ved within holding	time:				
Short Hold T	Time analyses (<	72hr):	□Yes □Mo	∐N/A		
Rush Turn A	Around Time requ	iested:	□Yes 🛂 No	□N/A		
Sufficient vol	ume:		Wes □No	□n/a		
Correct conta	ainers used:		Ø es □No	□N/A		
Pace contain	ers used:		Mes □No	□n/a		
Containers in			(D)√es □No	□n/A		
		4000 il- franco in 491		NVA		
		1006 soils frozen in 48				
Filtered volur	me received for dis	ssolved tests?	□Yes □No			
Sample label	s match COC: Da	te / time / ID / analyses	Yes No	□N/A		
Samples con	tain multiple phas	es? Matrix: W	☐Yes DNo	□N/A		
		vation in compliance?	≥ Yes □No	□N/A List	sample IDs, volumes, lot #'s of preservative b/time added.	and the
	, HCl<2; NaOH>9 Si /OA, Micro, O&G, K	ulfide, NaOH>10 Cyanide	LOT#: 630901	() Gain	, time added.	
	er sample checks:		201#. 0 7000			
20.50	strip turns dark?		□Yes □No			
Potassium io	dide test strip turn	s blue/purple? (Preser	/e) □Yes □No			
Trip Blank pr	esent:		□Yes □No	N/A N/A		
	n VOA vials (>6m	m):	□Yes □No	MN/A		
	n USDA Regulate		□Yes □No	DINTA		
	200					
	cation/ Resolutio	035A / TX1005 vials in Cop	by COC to Client? Y		Field Data Required? Y / N	
Person Conta			Date/Time:			
Comments/ F	-					
Project Mana	iger Review:			Date:	>	

1	Pace® Location Reques	ted (City/Stat	el:									_				_	_							
/Dagge	Pace Analytical Kansas				CHAIN-OF-CUSTODY Analytical Request Document						LAB USE ONLY- Affix Workorder/Login Label Here													
/Tauc	9608 Loiret Blvd., Lenexa, KS	66219		,	Chain-of-Cu	istoriv is a LFG	AL DOCUMENT - Co	molete all rel	DUC	annem			III 944	GOMES!										
<u> </u>					endin or co	Stody is a ced	AL DOCUMENT - CO	mpiete all rei	evant ne	eias				24	F									
Company Name:	Evergy Kansas Central, In				Contact/Report 1	o: Jake Hu	ımphrey					1	SA.		2.									
Street Address:	818 S Kansas Avenue, To	peka, KS 6661	2		Phone #:	(913)63	4-0605								*									
					E-Mail;	jake.hu	mphrey@evergy	.com						10	36	Sca	n OR (Code fo	or instru	ıctione				
					Cc E-Mail;								- W.	W.D.				J040 10	01 1113012	10110113				
Customer Project #:												_								Tee		(1) (1) (2) (2)		
Project Name:	LEC INACTIVE ASH POND	s		1	Invoice To:	Lauren	ce Center						_		Specify C	ontainer	Size **					e: (1) 1L, (2) 5i nL, (6) 40mL v		
		-			Invoice E-Mail:							3								Te	rraCore, (9) 9	0mL, (10) Oth	er	
Site Collection Info/F	Facility ID (as applicable):						ap@onlinecaptur	ecenter.con	n					Identify	Contain	er Preserv	vative Ty	/pe***				Types: (1) No		
	demity to (as applicable).				Purchase Order # applicable):	(IT W51R-2	2000095397					2										(5) NaOH, (6) d. Thiosulfate,		
														Analys	is Reque	sted	_			eOH, (11) Oth		(3) MacDible P	(10)	
Time Zone Collected	L I LAW I LIDT I L	1 tr 1 tr 1 cm			Quote #:																Proj. Mgr:			Ta
Data Deliverables:	: []AK []PT []		[][County / State or							l l									Alice Spi	iller		fied fo
- 3.5 3/13/14/14/14/1		regulatory Pro	gram (DW	, KCKA, et	c.) as applicable:	Reportat	ole [] Yes []	() No													AcctNum ,	/ Client ID:		util
[] Level II [] I	Level III [] Level IV		Ru	sh (Pre-a	pproval require	id).	DW DWG	ID # or WW Pe	rmit # ac	applicable										ŽĮ.				e id
f 1 500 HD		[] Same Day	/ [] 1 D:	y [X] 2	Day [] 3 Day [l Other	DW FW3	ID#OIVVVVFE	111111 # 45	аррисарн	W:								0 1	Se (Table #:			Jance .
[] EQUIS		Date Results					Field Filtered (if a	policable). [1 Ves	[X] No										12	Profile / To			-forn
[] Other		Requested:					Analysis:													1-	9655	empiate:		1-cor
 Matrix Codes (Inse 	ert in Matrix box below); Drink	ing Water (DW),	Ground V	Vater (GW), Waste Water (V	VW), Product (P), Soil/Solid (SS), O	il (OL), Wipe	(WP), Ti	ssue (TS),	Bioassay											ottle Ord. II).	- 10
(B), Vapor (V), Surface	ce Water (SW), Sediment (SED)	, Sludge (SL), Ca	ulk (CK), L	eachate (L	L), Biosolid (BS), C	other (OT)	т					ც									EZ 310		··	ation
С	ustomer Sample ID		Matrix *	Comp /	Composi	te Start	Collected or Co	mposite End	#	Res. C	nlorine									-				Serv
				Grab	Date	Time	Date	Time	Cont.	Results	Units	200.8									Sam	ple Comr	nent	Pre
MW-39			WΤ	Grab	(#)	292	5/13/24	1130	1	898	352	х								//	2049	27	38	1
MW-40			WT	Grab	, ē .,	:•:	Elizion	1205	1		:(+)	х								- 4	1011	× .		+
MW-L			wī	Grab	745		5/17/11							+	_	+	-							+
100				GIAD			5/13/24	1055	1	3.00.0	55	X												
									-		-			-	\rightarrow		-		-	_				-
														_			_							+
									-				-	-	_	_	-							
			-5										-		_					-				+-
Additional Instructio	ins from Page®.					Collected By:										100 /		<u> </u>						
Additional matructio	instrontrace .					(Printed Nam	. М	att Van	derF	utte	ո	Custom	ner Rema	arks / Sp	ecial Con	ditions /	Possible	Hazard	5:					
						Signature:	,					# Cool	lers:	Th	ermomete	riD:	Corre	ction Fact	or (°C)·	Obs, Ten	nn. (°C)	Corrected Te	nn 1/*C1	On Ice:
hallow the decision of the dec	and the same of th					Jighature.						-	(92.07)			WHEN		2				1,4		un ice.
Relinquished by/Compan	an Ca CAA	/ scs		5/1		630	Received by/Company	/: (Signature)	X	5	>			Da	C/Time:	,	16	251	7	Tracking Nu	mber:			
Relinquished by/Compan	ny: (Signature)	/ 303		Date/Time:	1/04	WI	Received by/Company	r (Signature)	6						7/1 *)	18	/(.	/					
				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ceived by/company	, (Signature)						l ba	ice/ iime:				D	Delivered l	oy: [] In-	Person [] Courier	
Reluquished by/Compan	ıy: (Signature)			Date/Time:			Received by/Company	r: (Signature)				Date/Time:												
S C										[] FedEX [[] UPS	[] Other								
Religiquished by/Company: (Signature) O Date/Tin				Date/Time:			Received by/Company	y: (Signature)				Date/Time:					-F	1						
<u>q</u>																				Page:	1	of	1	