

2023 – 2024 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

BOTTOM ASH POND JEFFREY ENERGY CENTER ST. MARYS, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 0210308-000 July 2024

2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report

Table of Contents

List of ⁻	Tables	A STOKE MOHIT	
List of	Figures		
List of A	Attachm	# 70 : 881 : L =	
1. I	ntroduc	tion NAL GEOLANIA	
1	l.1 40	CFR § 257.90(E)(6) SUMMARY	
	1.1	1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	
	1.1	2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	
	1.1	3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	
	1.1	4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	
	1.1	5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy	
	1.1	6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities	
2. 4	10 CFR §	257.90 Applicability	
2	2.1 40	CFR § 257.90(A)	
2	2.2 40	CFR § 257.90(E) – SUMMARY	
	2.2	2.1 Status of the Groundwater Monitoring Program	
	2.2	2.2 Key Actions Completed	
	2.2	2.3 Problems Encountered	
	2.2	2.4 Actions to Resolve Problems	
	2.2	, ,	
2		CFR § 257.90(E) – INFORMATION	
	2.3		
	2.3		
	2.3		
	2.3		
	2.3	3.5 40 CFR § 257.90(e)(5) – Other Requirements	

Revision No.	Date	Notes

i

List of Tables

Table No.	Title
1	Summary of Analytical Results – Assessment Monitoring
II	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – March 2023 Sampling Event
III	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – September 2023 Sampling Event

List of Figures

Figure No.	Title
1	Bottom Ash Pond (Inactive) Location Map
2	Bottom Ash Pond (Inactive) Groundwater Potentiometric Elevation Contour Map – September 6, 2023
3	Bottom Ash Pond (Inactive) Groundwater Potentiometric Elevation Contour Map – December 12, 2023
4	Bottom Ash Pond (Inactive) Groundwater Potentiometric Elevation Contour Map $-$ March 13 $-$ 14, 2024

List of Attachments

Attachment 1 – Statistical Analyses

1-1	March 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation
1-2	September 2024 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

2-1	September 2023 Semiannual Sampling Event Laboratory Analytical Report
2-2	December 2023 Annual Assessment Sampling Event Laboratory Analytical Report
2-3	March 2024 Semiannual Sampling Event Laboratory Analytical Report

2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Jeffrey Energy Center (JEC) inactive Bottom Ash Pond (BAP) consistent with applicable sections of Code of Federal Regulations Title 40 §§ 257.90 through 257.98, and describes activities conducted from July 2023 through June 2024 and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report for the JEC BAP is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Mark Nicholls

Kansas License No.: Professional Geologist No. 881

Title: Technical Expert 2

Company: Haley & Aldrich, Inc.

1. Introduction

This 2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the inactive Bottom Ash Pond (BAP) at the Jeffrey Energy Center (JEC), monitored by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the BAP consistent with applicable sections of § 257.90 through § 257.98, describes activities conducted in the prior calendar year (July 2023 through June 2024), and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in **bold italic font**, followed by a narrative description of how each Rule requirement has been met.

Evergy prepared and placed in the facility's operating record a notification of intent to initiate closure of the BAP by December 17, 2015. Due to the USEPA Extension of Compliance Deadlines for Certain Inactive Surface Impoundments, Response to Partial Vacatur effective October 4, 2016, in accordance with the requirement under § 257.100(e)(1), the alternative reporting timeframes specified in § 257.100(e)(2) through (6) are applicable for the BAP.

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (July 1, 2023), the BAP was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (June 30, 2024), the BAP was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a)

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

The BAP is operating under an assessment monitoring program; therefore, no statistical evaluations were completed on Appendix III constituents from July 2023 through June 2024.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b)

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on January 13, 2020 for the BAP with a notification establishing assessment monitoring provided February 12, 2020 to meet the requirements of 40 CFR § 257.95. The BAP remained in assessment monitoring from July 2023 through June 2024.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

No statistically significant levels were identified above the groundwater protection standards for those constituents listed in Appendix IV to this part from July 2023 through June 2024 for the BAP. The statistical evaluation reports for semiannual assessment monitoring sampling events from March 2023 and September 2023 were completed in July 2023 and January 2024, respectively, and are included in Attachment 1.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated from July 2023 through June 2024 for this unit. The BAP remained in assessment monitoring during this annual period.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the BAP from July 2023 through June 2024; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

No assessment of corrective measures was required to be initiated from July 2023 through June 2024 for this unit. The BAP remained in assessment monitoring during this annual period.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The BAP remains in assessment monitoring; no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required from July 2023 through June 2024.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) of this section.

Evergy has installed and certified a groundwater monitoring system at the JEC BAP. The BAP is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the JEC BAP as required by the Rule. Groundwater sampling and analysis was conducted in accordance with the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year from July 2023 through June 2024.

2.2.1 Status of the Groundwater Monitoring Program

The BAP remained in the assessment monitoring program through June 2024.

2.2.2 Key Actions Completed

The 2022 – 2023 Annual Groundwater Monitoring and Corrective Action Report was completed in July 2023 for the time period July 2022 through June 2023. Statistical evaluation was completed in July 2023 on analytical data from the March 2023 assessment monitoring sampling event.

2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report

A semiannual assessment monitoring sampling event was completed in September 2023 for detected Appendix IV constituents identified from the December 2022 annual assessment monitoring sampling event. Statistical evaluation was completed in January 2024 on analytical data from the September 2023 semiannual assessment monitoring sampling event.

An annual assessment monitoring sampling event was completed on December 12, 2023 to identify detected Appendix IV constituents for subsequent semiannual sampling events planned for March 2024 and September 2024. Semiannual assessment monitoring sampling was completed in March 2024 for detected Appendix IV constituents identified during the December 2023 annual monitoring event. Statistical evaluation of the results from the March 2024 semiannual assessment monitoring sampling event are due to be completed in July 2024 and will be reported in the next annual report.

2.2.3 Problems Encountered

No noteworthy problems (i.e., problems could include damaged wells, issues with sample collection or lack of sampling, or problems with analytical analysis) were encountered at the BAP from July 2023 through June 2024.

2.2.4 Actions to Resolve Problems

No problems were encountered at the BAP from July 2023 through June 2024; therefore, no actions to resolve the problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for July 2024 through June 2025 include the 2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report, statistical analysis of assessment monitoring analytical data collected in March 2024, semiannual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the JEC BAP is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned from July 2023 to June 2024.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b), three independent assessment monitoring samples from each background and downgradient monitoring well were collected from July 2023 through June 2024. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the BAP is presented in Table I of this report, with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event in July 2023 through June 2024 are provided in Figures 2 through 4.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was initiated on January 13, 2020 with a notification establishing assessment monitoring provided on February 12, 2020 to meet the requirements of 40 CFR § 257.95. The BAP remained in assessment monitoring from July 2023 through June 2024.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed from July 2023 through June 2024.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternative source demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since January 13, 2020. Three rounds of assessment monitoring sampling were completed from July 2023 through June 2024. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected Appendix IV constituents for the BAP are included in Tables II and III. The background concentrations and groundwater protection standards provided in Tables II and III were utilized for the statistical evaluations completed from July 2023 through June 2024 for the March 2023 and September 2023 semiannual assessment monitoring sampling events, respectively.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring alternative source demonstration or certification was required from July 2023 through June 2024. The BAP remained in assessment monitoring during this annual period.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from

2023 – 2024 Annual Groundwater Monitoring and Corrective Action Report

the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated from July 2023 through June 2024; therefore, no demonstration or certification is applicable for this unit.

TABLES

TABLE I

SUMMARY OF ANALYTICAL RESULTS - ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC.
JEFFREY ENERGY CENTER, INACTIVE BOTTOM ASH POND

ST. MARYS, KANSAS

		Upgradient							Dow	ngradient .								
Location		MW-IBA-4			MW-IBA-1			MW	V-IBA-2	_			MW-IBA-3					
Measure Point (TOC)		1201.86			1171.65			11	171.66				1164.95					
Sample Name	IBA-4-090623	IBA-4-121223	IBA-4-031324	IBA-1-090623	IBA-1-121223	IBA-1-031324	IBA-2-090623	IBA-DUP-090623	IBA-2-121223	IBA-2-031324	IBA-3-090623	IBA-3-121223	JEC-IBA-DUP-121223	IBA-3-031324	JEC-IBA-DUP-031324			
Sample Date	09/06/2023	12/12/2023	3/13/2024	09/06/2023	12/12/2023	3/13/2024	09/06/2023	09/06/2023	12/12/2023	3/13/2024	09/06/2023	12/12/2023	12/12/2023	3/13/2024	3/13/2024			
Final Lab Report Date	9/22/2023	12/23/2023	3/29/2024	9/22/2023	12/23/2023	3/29/2024	9/22/2023	9/22/2023	12/23/2023	3/29/2024	9/22/2023	12/23/2023	12/23/2023	3/29/2024	3/29/2024			
Final Lab Report Revision Date	N/A	N/A	4/26/2024	N/A	N/A	4/26/2024	N/A	N/A	N/A	4/26/2024	N/A	N/A	N/A	4/26/2024	4/26/2024			
Final Radiation Lab Report Date	N/A	1/9/2024	N/A	N/A	1/9/2024	N/A	N/A	N/A	1/9/2024	N/A	N/A	1/9/2024	1/9/2024	N/A	N/A			
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Lab Data Reviewed and Validated	12/13/2023	3/5/2024	6/17/2024	12/13/2023	3/5/2024	6/17/2024	12/13/2023	12/13/2023	3/5/2024	6/17/2024	12/13/2023	3/5/2024	3/5/2024	6/17/2024	6/17/2024			
Depth to Water (ft btoc)	55.25	56.09	54.35	28.34	26.11	25.48	29.53	-	27.69	26.96	32.37	31.27	-	30.47	30.47			
Temperature (Deg C)	21.33	13.00	16.67	19.93	10.98	18.09	18.51	-	12.36	16.60	20.41	11.99	-	15.88	-			
Conductivity (μS/cm)	1060	991	1060	1060	1940	1810	1190	-	1750	1690	936	1930	-	1870	-			
Turbidity (NTU)	1.3	14.0	0.0	5.3	5.9	23.2	2.1	-	2.7	0.0	0.2	0.3	-	0.0	-			
pH, Field (su)	7.07	7.22	6.56	7.17	7.13	7.43	7.12	-	7.14	7.43	7.18	7.17	-	7.43	-			
Dissolved Oxygen, Field (mg/L)	0.04	0.00	0.14	0.24	0.00	0.00	0.11	-	0.37	0.00	0	0.00	-	0.00	-			
ORP, Field (mV)	-123	-80	-47	-93	-123	-83	-94	-	-98	-83	71	-85	-	-40	-			
Boron, Total (mg/L)	0.23	-	0.22	0.39	-	0.36	0.22	0.22	-	0.21	0.30	-	-	0.29	0.28			
Calcium, Total (mg/L)	104	-	105	291	-	277	224	224	-	224	254	-	-	261	252			
Chloride (mg/L)	17.3	-	17.6	94.6	-	104	104	102	-	109	109	-	-	118	136			
Fluoride (mg/L)	0.53	-	0.48	< 0.20	-	< 0.20	< 0.20	< 0.20	-	< 0.20	< 0.20	-	-	< 0.20	< 0.20			
Sulfate (mg/L)	164	-	175	764	-	765	578	608	-	590	994	-	-	683	681			
pH (su)	7.1	-	7.2	7.1	-	7.2	7.1	7.2	-	7.2	7.1	-	-	7.2	7.2			
TDS (mg/L)	638	-	608	1560	-	1410	1340	1360	-	1340	1570	-	-	1400	1380			
Antimony, Total (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-	< 0.0010	< 0.0010	-	-			
Arsenic (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-	< 0.0010	< 0.0010	-	-			
Barium, Total (mg/L)	0.018	0.021	0.018	0.029	0.031	0.028	0.024	0.024	0.026	0.024	0.018	0.019	0.018	0.018	0.016			
Beryllium, Total (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-	< 0.0010	< 0.0010	-	-			
Cadmium, Total (mg/L)	-	< 0.00050	-	-	< 0.00050	-	-	-	< 0.00050	-	-	< 0.00050	< 0.00050	-	-			
Chromium, Total (mg/L)	-	< 0.0050	-	-	< 0.0050	-	-	-	< 0.0050	-	-	< 0.0050	< 0.0050	-	-			
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	0.0015	0.0014	0.0015	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0012	0.0013	0.0012	0.0012	0.0012			
Lead, Total (mg/L)	-	< 0.010	-	-	< 0.010	-	-	-	< 0.010	-	-	< 0.010	< 0.010	-	-			
Lithium, Total (mg/L)	0.036	0.037	0.032	0.021	0.020	0.016	0.026	0.026	0.023	0.020	0.025	0.024	0.023	0.022	0.019			
Molybdenum, Total (mg/L)	0.0017	0.0019	0.0018	0.0078	0.0082	0.0081	0.0022	0.0023	0.0023	0.0025	0.0023	0.0023	0.0023	0.0023	0.0024			
Selenium, Total (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-	< 0.0010	< 0.0010	-	-			
Thallium, Total (mg/L)	-	< 0.0010	-	-	< 0.0010	-	-	-	< 0.0010	-	-	< 0.0010	< 0.0010	-	-			
Mercury, Total (mg/L)	-	< 0.00020	-	-	< 0.00020	-	-	-	< 0.00020	-	-	< 0.00020	< 0.00020	-	-			
Fluoride (mg/L)	0.53	0.55	0.48	< 0.20	0.27	< 0.20	< 0.20	< 0.20	0.37	< 0.20	< 0.20	0.25	0.24	< 0.20	< 0.20			
Bromide (mg/L)	< 1.0	-	-	2.1	-	-	1.2	1.3	-	-	1.7	-	-	-	-			
Radium-226 & 228 Combined (pCi/L)	-	0.826 ± 0.966 (1.76)	-	-	0.626 ± 0.761 (1.54)	-	-	-	0.193 ± 0.659 (1.32)	-	-	0.585 ± 0.892 (1.80)	0.0623 ± 0.704 (1.50)	-	-			
,		. ,									L	· · ·						

Notes:

Radiological results are presented as activity plus or minus uncertainty with minimum detectable concentration (MDC).

Bold value: Detection above laboratory reporting limit or MDC.

 $\mu S/cm$ = micro Siemens per centimeter

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit

TDS = total dissolved solids

TOC = top of casing

TABLE II ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS MARCH 2023 SAMPLING EVENT

JEFFREY ENERGY CENTER
BOTTOM ASH POND (INACTIVE)

Well Number	Background Value ¹	GWPS
	CCR Appendix-IV Barium, Total (mg/L)	
MW-IBA-4 (upgradient)	0.0224	NA
MW-IBA-1		2
MW-IBA-2		2
MW-IBA-3		2
	CCR Appendix-IV Cobalt, Total (mg/L)	
MW-IBA-4 (upgradient)	0.001	NA
MW-IBA-1		0.006
MW-IBA-2		0.006
MW-IBA-3		0.006
	CCR Appendix-IV Fluoride, Total (mg/L)	
MW-IBA-4 (upgradient)	0.683 ²	NA
MW-IBA-1		4.0
MW-IBA-2		4.0
MW-IBA-3		4.0
	CCR Appendix-IV Lithium, Total (mg/L)	
MW-IBA-4 (upgradient)	0.0397	NA
MW-IBA-1		0.040
MW-IBA-2		0.040
MW-IBA-3		0.040
(CCR Appendix-IV Molybdenum, Total (mg,	/L)
MW-IBA-4 (upgradient)	0.0024	NA
MW-IBA-1		0.100
MW-IBA-2		0.100
MW-IBA-3		0.100

Notes:

 $CCR = Coal\ Combustion\ Residuals$

GWPS = Groundwater Protection Standard

mg/L = milligrams per Liter

NA = Not Applicable

 $^{^{1}\,}$ Based on background data collected from 03/13/2018 through 3/09/2022, unless otherwise noted.

 $^{^{2}}$ Based on background data collected from 03/13/2018 through 3/14/2023.

TABLE III ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS SEPTEMBER 2023 SAMPLING EVENT

JEFFREY ENERGY CENTER
BOTTOM ASH POND (INACTIVE)

Well Number	Background Value ¹	GWPS
Well Nulliber	background value	GWF3
	CCR Appendix-IV Barium, Total (mg/L)	
MW-IBA-4 (upgradient)	0.0219	NA
MW-IBA-1		2
MW-IBA-2		2
MW-IBA-3		2
	CCR Appendix-IV Cobalt, Total (mg/L)	
MW-IBA-4 (upgradient)	0.001	NA
MW-IBA-1		0.006
MW-IBA-2		0.006
MW-IBA-3		0.006
	CCR Appendix-IV Fluoride, Total (mg/L)	
MW-IBA-4 (upgradient)	0.683 ²	NA
MW-IBA-1		4.0
MW-IBA-2		4.0
MW-IBA-3		4.0
	CCR Appendix-IV Lithium, Total (mg/L)	
MW-IBA-4 (upgradient)	0.0393	NA
MW-IBA-1		0.040
MW-IBA-2		0.040
MW-IBA-3		0.040
	CCR Appendix-IV Molybdenum, Total (mg/L)	
MW-IBA-4 (upgradient)	0.0024	NA
MW-IBA-1		0.100
MW-IBA-2		0.100
MW-IBA-3		0.100

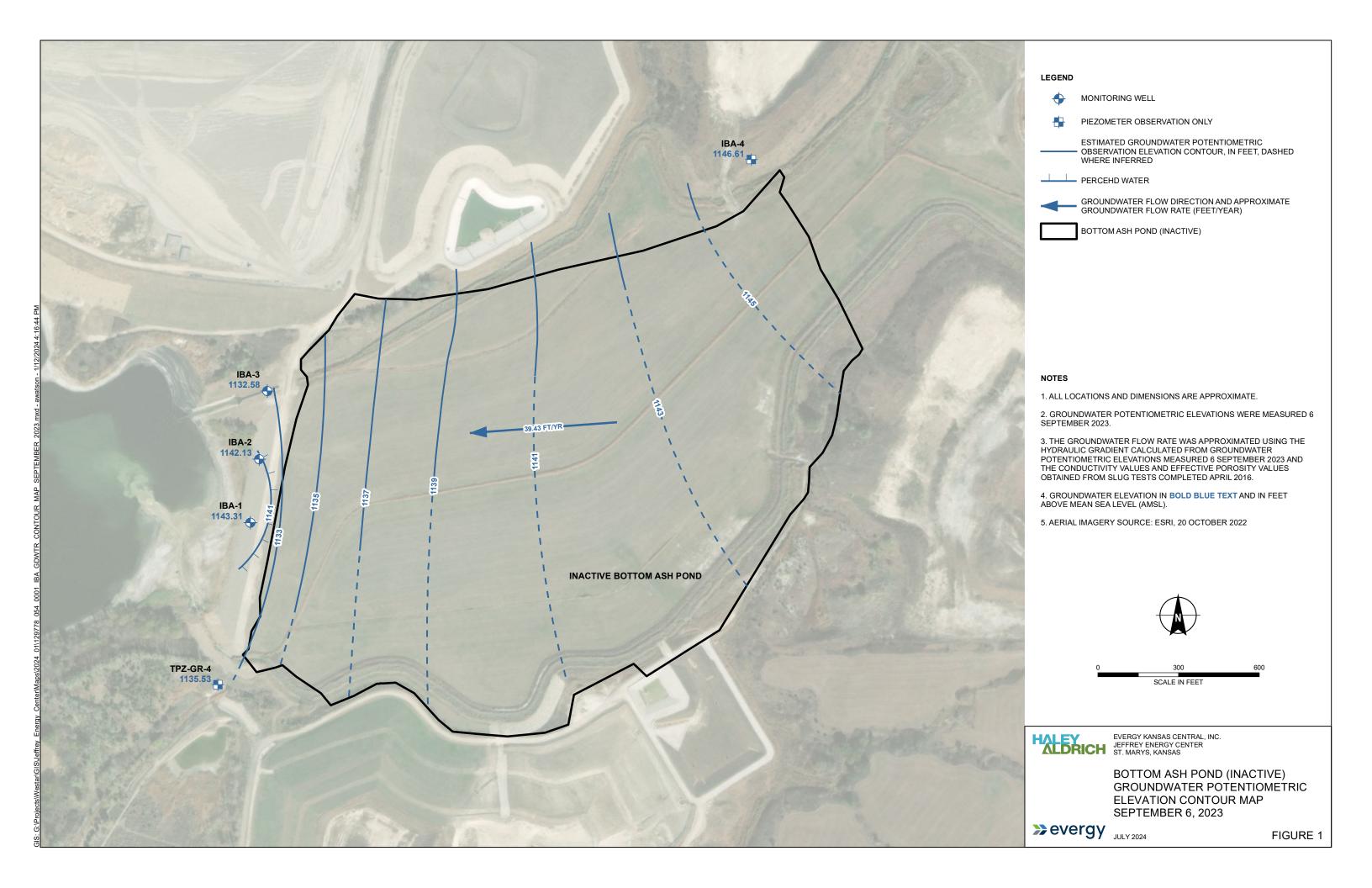
Notes:

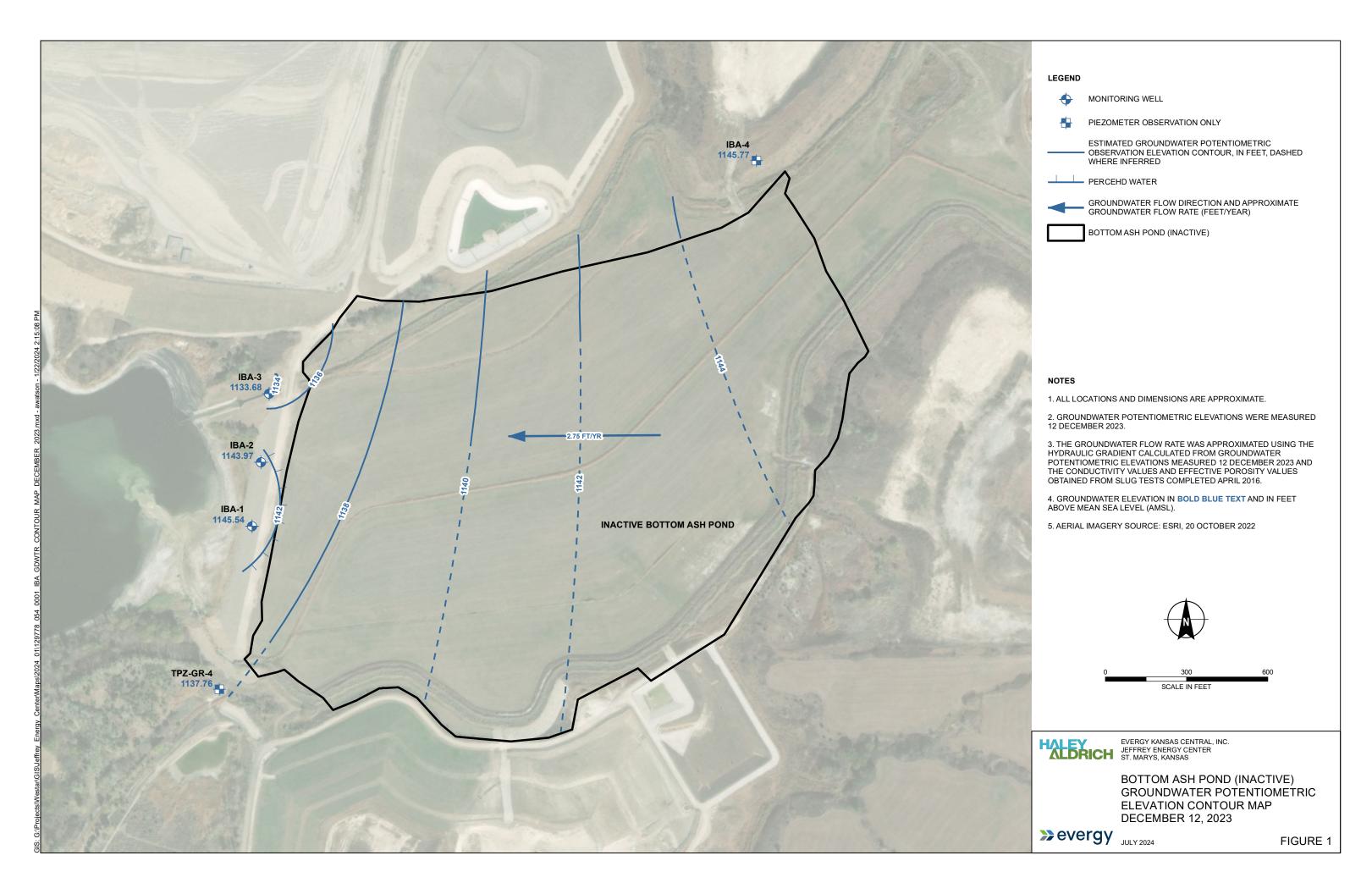
 $CCR = Coal\ Combustion\ Residuals$

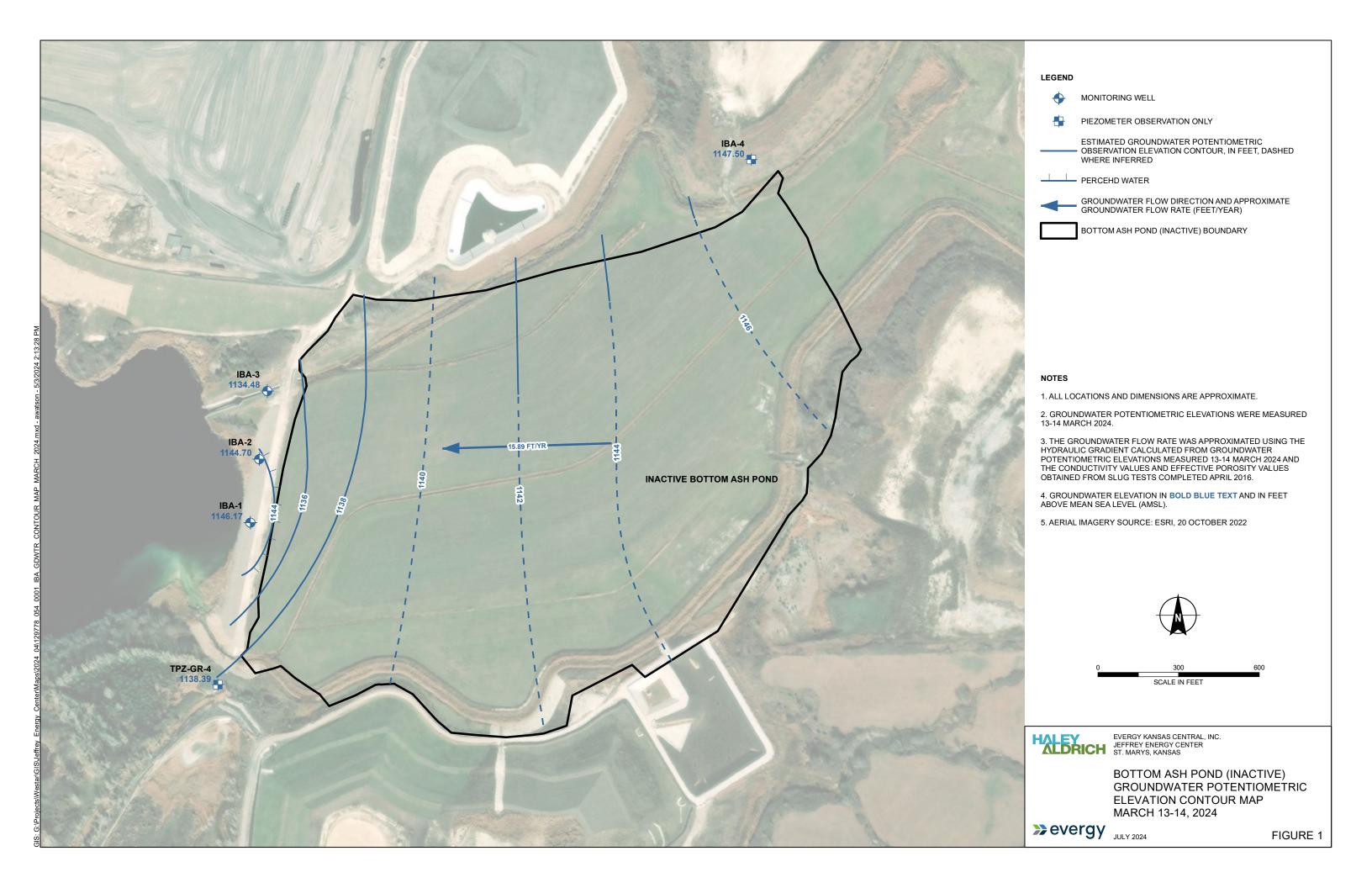
GWPS = Groundwater Protection Standard

mg/L = milligrams per Liter

NA = Not Applicable




 $^{^{1}}$ Based on background data collected from 03/13/2018 through 09/06/2023, unless otherwise noted.


 $^{^{2}}$ Based on background data collected from 03/13/2018 through 3/14/2023.

FIGURES

ATTACHMENT 1 Statistical Analyses

ATTACHMENT 1-1

March 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

July 21, 2023 File No. 0210308-000

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2023 Semiannual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed July 21, 2023

Jeffrey Energy Center

Bottom Ash Pond (inactive)

Pursuant to Code of Federal Regulations Title 40 (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the March 2023 semiannual assessment monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Bottom Ash Pond (BAP; inactive). This semiannual assessment monitoring groundwater sampling event was completed on March 14, 2023, with laboratory results received and validated on June 8, 2023.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSLs) above the groundwater protection standards (GWPS) consistent with the requirements of the Rule. GWPS for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]), was certified by Haley & Aldrich, Inc. on July 14, 2020. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above

Evergy Kansas Central, Inc. July 21, 2023 Page 2

background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSL existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine the SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semiannual assessment monitoring data.

The parametric TL methods were used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2023** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location IBA-4 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the

Evergy Kansas Central, Inc. July 21, 2023 Page 3

document, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through March 2022 for all constituents except fluoride, which was updated through March 2023.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the March 2023 semiannual assessment monitoring event were compared to their respective background UTLs and GWPS (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent an SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation on groundwater sampling data collected in March 2023, no SSLs above GWPS occurred at the JEC BAP (inactive).

Enclosure:

Table I – Summary of Semiannual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMIANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2023 SAMPLING EVENT JEFFREY ENERGY CENTER BOTTOM ASH POND (INACTIVE)

										MCL Co	omparison						Interw	ell Analysis	Groundwater Protect	tion Standard
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non- Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Group	March 2023 Concentration (mg/L)	Upper Tolerance Limit (mg/L)	SSI	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL)	SSL
	CCR Appendix-IV: Barium, Total (mg/L)																			
MW-IBA-4	19/19	0%	-	0.022	0.000002339	0.001529	0.07918	2	mg/L	0	0	No	No	Stable	Normal	0.019	0.0224		2	
MW-IBA-1	19/19	0%	-	0.039	0.00001018	0.00319	0.09903	2	mg/L	0	0	No	No	Decreasing	Normal	0.031		Yes		No
MW-IBA-2	19/19	0%	-	0.036	0.000009064	0.003011	0.1031	2	mg/L	0	0	No	No	Decreasing	Normal	0.026		Yes		No
MW-IBA-3	19/19	0%	-	0.021	0.000001246	0.001116	0.0599	2	mg/L	0	0	No	No	Decreasing	Normal	0.017		No		No
									CCR A	ppendix-IV: Col	oalt, Total (mg/L)									
MW-IBA-4	0/19	100%	0.001-0.001		0	0	0	0.006	mg/L	0	0	NA	NA	NA	Non-parametric	< 0.0010	0.001		0.006	
MW-IBA-1	19/19	0%	-	0.0027	1.323E-07	0.0003637	0.1758	0.006	mg/L	0	0	No	No	Decreasing	Normal	0.0017		Yes		No
MW-IBA-2	13/19	32%	0.001-0.001	0.0013	7.31E-09	0.0000855	0.07924	0.006	mg/L	0	0	No	No	Decreasing	Normal	< 0.0010		No		No
MW-IBA-3	19/19	0%	-	0.0021	1.112E-07	0.0003334	0.1998	0.006	mg/L	0	0	No	No	Decreasing	Non-parametric	0.0013		Yes		No
									CCR	Appendix-IV: F	luoride (mg/L)									
MW-IBA-4	20/20	0%	-	0.64	0.009662	0.0983	0.1931	4	mg/L	0	0	Yes	No	Stable	Normal	0.42	0.683 ²		4.0	
MW-IBA-1	12/20	40%	0.2-0.2	0.63	0.01219	0.1104	0.3914	4	mg/L	0	0	Yes	No	Stable	Normal	< 0.20		No		No
MW-IBA-2	12/20	40%	0.2-0.2	0.4	0.005416	0.07359	0.2731	4	mg/L	0	0	No	No	Stable	Normal	< 0.20		No		No
MW-IBA-3	12/20	40%	0.2-0.2	0.37	0.00392	0.06261	0.2465	4	mg/L	0	0	No	No	Stable	Normal	< 0.20		No		No
									CCR Ap	pendix-IV: Lith	ium, Total (mg/L)	1								
MW-IBA-4	19/19	0%	-	0.04	0.000006111	0.002472	0.07063	0.04	mg/L	0	0	No	No	Stable	Normal	0.037	0.0397		0.040	
MW-IBA-1	18/19	5%	0.03-0.03	0.026	0.00001789	0.00423	0.235	0.04	mg/L	0	0	Yes	No	Stable	Non-parametric	0.019		No		No
MW-IBA-2	18/19	5%	0.03-0.03	0.028	0.00001251	0.003537	0.1623	0.04	mg/L	0	0	No	No	Increasing	Normal	0.025		No		No
MW-IBA-3	18/19	5%	0.03-0.03	0.028	0.00001054	0.003246	0.1493	0.04	mg/L	0	0	Yes	No	Increasing	Normal	0.023		No		No
									CCR Appe	ndix-IV: Molyb	denum, Total (mg	g/L)								
MW-IBA-4	19/19	0%	-	0.0024	1.988E-08	0.000141	0.07463	0.1	mg/L	0	0	Yes	No	Stable	Non-parametric	0.0019	0.0024		0.100	
MW-IBA-1	19/19	0%	-	0.0086	3.299E-07	0.0005744	0.07547	0.1	mg/L	0	0	No	No	Increasing	Normal	0.0086		Yes		No
MW-IBA-2	19/19	0%	-	0.0024	1.152E-08	0.0001073	0.04776	0.1	mg/L	0	0	Yes	No	Stable	Normal	0.0024		No		No
MW-IBA-3	19/19	0%	-	0.0025	1.895E-08	0.0001376	0.06348	0.1	mg/L	0	0	Yes	No	Increasing	Non-parametric	0.0023		No		No

Notes:

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter

NA = not analyzed pCi/L = picoCuries per Liter

SSI = statistically significant increase

SSL = statistically significant level

UTL = upper tolerance limits

HALEY & ALDRICH, INC.

¹ Based on background data collected from 03/13/2018 through 3/09/2022, unless otherwise noted.

² Based on background data collected from 03/13/2018 through 3/14/2023.

^{*} Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2)

ATTACHMENT 1-2

September 2023 Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

February 6, 2024 File No. 129778-035

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: September 2023 Semiannual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed January 5, 2024

Jeffrey Energy Center

Bottom Ash Pond (inactive)

Pursuant to Code of Federal Regulations Title 40 (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2023** semiannual assessment monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Bottom Ash Pond (BAP; inactive). This semiannual assessment monitoring groundwater sampling event was completed on **September 6, 2023**, with laboratory results received and validated on **December 13, 2023**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSLs) above the groundwater protection standards (GWPS) consistent with the requirements of the Rule. GWPS for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on July 14, 2020. The TL method,

Evergy Kansas Central, Inc. February 6, 2024 Page 2

as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSL existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine the SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semiannual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **September 2023** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location IBA-4 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,

Evergy Kansas Central, Inc. February 6, 2024 Page 3

March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **September 2023** for all constituents except fluoride, which was updated through **March 2023**.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **September 2023** semiannual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent a SSI. A sample concentration greater than the GWPS is considered to represent a SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in September 2023, no SSLs above GWPS occurred at the JEC BAP (inactive).**

Enclosure:

Table I – Summary of Semiannual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMIANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER 2023 SAMPLING EVENT JEFFREY ENERGY CENTER BOTTOM ASH POND (INACTIVE)

										MCL Co	omparison						Interwell	Analysis	Groundwater Protection Standard	
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation		CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	September 2023 Concentration (mg/L)	Background Limits ¹ (UTL) mg/L	SSI	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL) mg/L	SSL
				'	•		•	CCF	R Appendix-	IV: Barium, Tota	al (mg/L)	1								
MW-IBA-4 (upgradient)	20/20	0%	-	0.022	2.303E-06	0.001517	0.07883	2	mg/L	0	0	No	No	Stable	Normal	0.018	0.0219		2	
MW-IBA-1	20/20	0%	-	0.039	0.00001016	0.003187	0.09943	2	mg/L	0	0	No	No	Decreasing	Normal	0.029		Yes		No
MW-IBA-2	20/20	0%	-	0.036	9.945E-06	0.003154	0.1089	2	mg/L	0	0	No	No	Decreasing	Normal	0.024		Yes		No
MW-IBA-3	20/20	0%	-	0.021	0.0000012	0.001095	0.05889	2	mg/L	0	0	No	No	Decreasing	Normal	0.018		No		No
							•	CC	R Appendix	-IV: Cobalt, Tota	al (mg/L)									
MW-IBA-4 (upgradient)	0/20	100%	0.001-0.001		0	0	0	0.006	mg/L	0	0	NA	NA	NA	NA	<0.0010	0.001		0.006	
MW-IBA-1	20/20	0%	-	0.0027	1.415E-07	0.0003761	0.1844	0.006	mg/L	0	0	No	No	Decreasing	Normal	0.0015		Yes		No
MW-IBA-2	13/20	35%	0.001-0.001	0.0013	7.237E-09	0.00008507	0.07913	0.006	mg/L	0	0	No	No	Decreasing	Normal	<0.0010		No		No
MW-IBA-3	20/20	0%	-	0.0021	1.163E-07	0.000341	0.2073	0.006	mg/L	0	0	No	No	Decreasing	Non-parametric	0.0012		Yes		No
								(CCR Append	lix-IV: Fluoride (mg/L)									
MW-IBA-4 (upgradient)	21/21	0%	-	0.64	0.0092	0.09592	0.1881	4.0	mg/L	0	0	Yes	No	Stable	Normal	0.53	0.683 ²		4.0	
MW-IBA-1	12/21	43%	0.2-0.2	0.63	0.0119	0.1091	0.3922	4.0	mg/L	0	0	Yes	No	Stable	Normal	<0.20		No		No
MW-IBA-2	12/21	43%	0.2-0.2	0.4	0.005375	0.07331	0.2754	4.0	mg/L	0	0	No	No	Stable	Normal	<0.20		No		No
MW-IBA-3	12/21	43%	0.2-0.2	0.37	0.003863	0.06215	0.2472	4.0	mg/L	0	0	No	No	Stable	Normal	<0.20		No		No
							•	CCF	R Appendix-	IV: Lithium, Tot	al (mg/L)									
MW-IBA-4 (upgradient)	20/20	0%	-	0.04	5.839E-06	0.002417	0.06894	0.040	mg/L	0	0	No	No	Stable	Normal	0.036	0.0393		0.040	
MW-IBA-1	19/20	5%	0.03-0.03	0.026	0.0000174	0.004171	0.2298	0.040	mg/L	0	0	Yes	No	Stable	Non-parametric	0.021		No		No
MW-IBA-2	19/20	5%	0.03-0.03	0.028	0.00001274	0.003569	0.1622	0.040	mg/L	0	0	No	No	Increasing	Normal	0.026		No		No
MW-IBA-3	19/20	5%	0.03-0.03	0.028	0.00001052	0.003243	0.1481	0.040	mg/L	0	0	Yes	No	Increasing	Normal	0.025		No		No
								CCR A	ppendix-IV:	Molybdenum,	Total (mg/L)									
MW-IBA-4 (upgradient)	20/20	0%	-	0.0024	2.063E-08	0.0001436	0.0764	0.100	mg/L	0	0	Yes	No	Stable	Non-parametric	0.0017	0.0024		0.100	
MW-IBA-1	20/20	0%	-	0.0086	3.143E-07	0.0005606	0.07357	0.100	mg/L	0	0	No	No	Increasing	Normal	0.0078		Yes		No
MW-IBA-2	20/20	0%	-	0.0024	1.103E-08	0.000105	0.04677	0.100	mg/L	0	0	Yes	No	Stable	Normal	0.0022		No		No
MW-IBA-3	20/20	0%	-	0.0025	1.882E-08	0.0001372	0.06307	0.100	mg/L	0	0	Yes	No	Increasing	Non-parametric	0.0023		No		No

Notes and Abbreviations:

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per liter

NA = not analyzed RSL = regional screening level

SSI = statistically significant increase

SSL = statistically significant level

HALEY & ALDRICH, INC. JULY 2024

 $^{^{1}}$ Based on background data collected from 03/13/2018 through 09/06/2023, unless otherwise noted.

² Based on background data collected from 03/13/2018 through 3/14/2023.

^{*} Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

ATTACHMENT 2 Laboratory Analytical Reports

ATTACHMENT 2-1
September 2023 Semiannual Sampling Event
Laboratory Analytical Report

September 22, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 07, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-22-16 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60437054001	IBA-1-090623	Water	09/06/23 10:00	09/07/23 16:30
60437054002	IBA-2-090623	Water	09/06/23 10:50	09/07/23 16:30
60437054003	IBA-3-090623	Water	09/06/23 12:30	09/07/23 16:30
60437054004	BA-4-090623	Water	09/06/23 15:35	09/07/23 16:30
60437054005	IBA-DUP-090623	Water	09/06/23 10:50	09/07/23 16:30

SAMPLE ANALYTE COUNT

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60437054001	IBA-1-090623	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	4	PASI-K
0437054002	IBA-2-090623	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	4	PASI-K
0437054003	IBA-3-090623	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	4	PASI-K
0437054004	BA-4-090623	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	4	PASI-K
0437054005	IBA-DUP-090623	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	4	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: September 22, 2023

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 864377

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60436996002,60437054001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3422656)
 - Boron
 - Calcium
- MS (Lab ID: 3422658)
 - Calcium
- MSD (Lab ID: 3422657)
 - Boron
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: September 22, 2023

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: September 22, 2023

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:September 22, 2023

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:September 22, 2023

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- BA-4-090623 (Lab ID: 60437054004)
- IBA-1-090623 (Lab ID: 60437054001)
- IBA-2-090623 (Lab ID: 60437054002)
- IBA-3-090623 (Lab ID: 60437054003)
- IBA-DUP-090623 (Lab ID: 60437054005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Evergy Kansas Central, Inc.
Date: September 22, 2023

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 865020

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60436338001,60437550003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3425425)
 - Chloride
 - Sulfate
- MS (Lab ID: 3425427)
 - Bromide
 - Chloride
 - Fluoride
 - Sulfate
- MSD (Lab ID: 3425426)
 - Fluoride
 - Sulfate

QC Batch: 865021

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60437054003,60437056002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3425432)
 - Chloride
 - Fluoride
 - Sulfate
- MSD (Lab ID: 3425431)
 - Sulfate

R1: RPD value was outside control limits.

- MSD (Lab ID: 3425431)
 - Sulfate

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:September 22, 2023

Additional Comments:

Analyte Comments:

QC Batch: 865021

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 3425430)

Sulfate

• MS (Lab ID: 3425432)

• Chloride

Sulfate

• MSD (Lab ID: 3425431)

Sulfate

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

Sample: IBA-1-090623	Lab ID: 604	37054001	Collected: 09/06/2	3 10:00	Received: 09)/07/23 16:30 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	l Services -	Kansas City					
Barium, Total Recoverable	0.029	mg/L	0.0050	1	09/13/23 16:19	09/15/23 11:07	7440-39-3	
Boron, Total Recoverable	0.39	mg/L	0.10	1	09/13/23 16:19	09/15/23 11:07	7440-42-8	
Calcium, Total Recoverable	291	mg/L	0.20	1	09/13/23 16:19	09/15/23 11:07	7440-70-2	M1
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.021	mg/L	0.010	1	09/14/23 10:15	09/15/23 12:40	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	09/14/23 10:15	09/18/23 10:57	7440-48-4	
Molybdenum, Total Recoverable	0.0078	mg/L	0.0010	1	09/14/23 10:15	09/18/23 10:57	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	OC					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1560	mg/L	20.0	1		09/12/23 09:01		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	0-H+B					
• •	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/09/23 13:19		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Bromide	2.1	mg/L	1.0	1		09/19/23 19:49	24959-67-9	
Chloride	94.6	mg/L	20.0	20		09/19/23 20:02	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/19/23 19:49	16984-48-8	
Sulfate	764	mg/L	50.0	50		09/20/23 18:24	14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

Sample: IBA-2-090623	Lab ID: 604	37054002	Collected: 09/06/2	23 10:50	Received: 09	0/07/23 16:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.024	mg/L	0.0050	1	09/13/23 16:19	09/15/23 11:11	7440-39-3	
Boron, Total Recoverable	0.22	mg/L	0.10	1	09/13/23 16:19	09/15/23 11:11	7440-42-8	
Calcium, Total Recoverable	224	mg/L	0.20	1	09/13/23 16:19	09/15/23 11:11	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.026	mg/L	0.010	1	09/14/23 10:15	09/15/23 12:42	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:21	7440-48-4	
Molybdenum, Total Recoverable	0.0022	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:21	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1340	mg/L	13.3	1		09/12/23 09:01		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/09/23 13:22		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Bromide	1.2	mg/L	1.0	1		09/19/23 20:16	24959-67-9	
Chloride	104	mg/L	20.0	20		09/19/23 20:29	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/19/23 20:16	16984-48-8	
Sulfate	578	mg/L	50.0	50		09/20/23 18:37	14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

Sample: IBA-3-090623	Lab ID: 604	37054003	Collected: 09/06/2	23 12:30	Received: 09	/07/23 16:30 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.018	mg/L	0.0050	1	09/13/23 16:19	09/15/23 11:13	7440-39-3	
Boron, Total Recoverable	0.30	mg/L	0.10	1	09/13/23 16:19	09/15/23 11:13	7440-42-8	
Calcium, Total Recoverable	254	mg/L	0.20	1	09/13/23 16:19	09/15/23 11:13	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Metl	hod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.025	mg/L	0.010	1	09/14/23 10:15	09/15/23 12:55	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	thod: Ef	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:24	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:24	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1570	mg/L	20.0	1		09/12/23 09:02		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
, ,	Pace Analytica							
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/09/23 13:36		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Bromide	1.7	mg/L	1.0	1		09/19/23 21:09	24959-67-9	
Chloride	109	mg/L	20.0	20		09/19/23 21:49	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/19/23 21:09	16984-48-8	
Sulfate	994	mg/L	50.0	50		09/20/23 19:40	14808-79-8	M1,R1

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

Sample: BA-4-090623	Lab ID: 60	437054004	Collected: 09/06/2	23 15:35	Received: 09	0/07/23 16:30 I	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7									
	Pace Analytic	al Services -	Kansas City							
Barium, Total Recoverable	0.018	mg/L	0.0050	1	09/13/23 16:19	09/15/23 11:15	7440-39-3			
Boron, Total Recoverable	0.23	mg/L	0.10	1	09/13/23 16:19	09/15/23 11:15	7440-42-8			
Calcium, Total Recoverable	104	mg/L	0.20	1	09/13/23 16:19	09/15/23 11:15	7440-70-2			
6010 MET ICP	Analytical Me	thod: EPA 60	010 Preparation Metl	nod: EP	A 3010					
	Pace Analytic	al Services -	Kansas City							
Lithium, Total Recoverable	0.036	mg/L	0.010	1	09/14/23 10:15	09/15/23 12:57	7439-93-2			
200.8 MET ICPMS	Analytical Me	thod: EPA 20	00.8 Preparation Met	hod: EF	PA 200.8					
	Pace Analytic		•							
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:27	7440-48-4			
Molybdenum, Total Recoverable	0.0017	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:27	7439-98-7			
2540C Total Dissolved Solids	Analytical Me	thod: SM 25	40C							
	Pace Analytic	al Services -	Kansas City							
Total Dissolved Solids	638	mg/L	10.0	1		09/12/23 09:02	2			
4500H+ pH, Electrometric	Analytical Me	thod: SM 450	00-H+B							
•	Pace Analytic	al Services -	Kansas City							
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/12/23 15:10)	H6		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.00							
	Pace Analytic	al Services -	Kansas City							
Bromide	<1.0	mg/L	1.0	1		09/20/23 20:18	24959-67-9			
Chloride	17.3	mg/L	1.0	1		09/20/23 20:18	16887-00-6			
Fluoride	0.53	mg/L	0.20	1		09/20/23 20:18	16984-48-8			
Sulfate	164	mg/L	20.0	20		09/20/23 20:30	14808-79-8			

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

Sample: IBA-DUP-090623	Lab ID: 604	37054005	Collected: 09/06/2	3 10:50	Received: 09	9/07/23 16:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.024	mg/L	0.0050	1	09/13/23 16:19	09/15/23 11:24	7440-39-3	
Boron, Total Recoverable	0.22	mg/L	0.10	1	09/13/23 16:19			
Calcium, Total Recoverable	224	mg/L	0.20	1	09/13/23 16:19	09/15/23 11:24	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	nod: EP	A 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.026	mg/L	0.010	1	09/14/23 10:15	09/15/23 12:59	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	00.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytic							
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:29	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	09/14/23 10:15	09/18/23 11:29	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1360	mg/L	13.3	1		09/12/23 09:02	2	
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
• •	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/09/23 13:24	1	H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
•	Pace Analytic	al Services -	Kansas City					
Bromide	1.3	mg/L	1.0	1		09/20/23 20:43	3 24959-67-9	
Chloride	102	mg/L	20.0	20		09/19/23 23:36	6 16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/20/23 20:43	3 16984-48-8	
Sulfate	608	mg/L	50.0	50		09/20/23 20:56	14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

LABORATORY CONTROL SAMPLE: 2422655

Date: 09/22/2023 03:58 PM

Pace Project No.: 60437054

QC Batch: 864377 Analysis Method:

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

EPA 200.7

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

METHOD BLANK: 3422654 Matrix: Water

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	09/15/23 10:34	
Boron	mg/L	<0.10	0.10	09/15/23 10:34	
Calcium	mg/L	< 0.20	0.20	09/15/23 10:34	

LABORATORT CONTROL SAMPLE.	3422033	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	1	1.0	103	85-115	
Boron	mg/L	1	1.0	100	85-115	
Calcium	mg/L	10	10.6	106	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 3422	:656		3422657	,						
Parameter	Units	60436996002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	50.2 ug/L	1	1	1.1	1.1	102	102	70-130	1	20	
Boron	mg/L	530 ug/L	1	1	1.5	1.5	102	101	70-130	1	20	M1
Calcium	mg/L	86800 ug/L	10	10	97.5	96.9	107	101	70-130	1	20	M1

MATRIX SPIKE SAMPLE:	3422658	00407054004	0-1-	140	140	0/ D	
Parameter	Units	60437054001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	mg/L	0.029	1	1.1	103	70-130	
Boron	mg/L	0.39	1	1.4	103	70-130	
Calcium	mg/L	291	10	301	103	70-130 N	И1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Cobalt

Date: 09/22/2023 03:58 PM

QUALITY CONTROL DATA

JEC INACTIVE BOTTOM ASH POND C Project:

Pace Project No.: 60437054

QC Batch: 864501 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

> Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <0.0010 0.0010 09/18/23 10:49 mg/L Molybdenum mg/L <0.0010 0.0010 09/18/23 10:49

LABORATORY CONTROL SAMPLE: 3423058

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cobalt 0.04 0.042 105 85-115 mg/L mg/L Molybdenum 0.04 0.042 106 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3423059 3423060 MS MSD 60437054001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Cobalt mg/L 0.0015 0.04 0.04 0.041 0.040 98 96 70-130 20 Molybdenum 0.0078 0.04 0.04 0.047 0.047 99 70-130 20 mg/L 99 0

3423061 MATRIX SPIKE SAMPLE: 60437055004 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Cobalt <0.0010 0.04 0.039 97 70-130 mg/L 0.0027 103 Molybdenum mg/L 0.04 0.044 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Lithium

Date: 09/22/2023 03:58 PM

QC Batch: 864504 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

METHOD BLANK: 3423069 Matrix: Water

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 09/15/23 12:30

LABORATORY CONTROL SAMPLE: 3423070

 Parameter
 Units
 Spike Conc.
 LCS Result
 LCS % Rec Limits
 Qualifiers

 mg/L
 1
 1.0
 102
 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3423071 3423072

MS MSD

60437054002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.026 104 Lithium mg/L 1.1 1.1 106 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

QC Batch: 864073 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

METHOD BLANK: 3421464 Matrix: Water

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054004, 60437054005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/12/23 08:59

LABORATORY CONTROL SAMPLE: 3421465

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 3421466

60436977001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 5230 **Total Dissolved Solids** 4810 8 mg/L 10

SAMPLE DUPLICATE: 3421467

Date: 09/22/2023 03:58 PM

60437054004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 638 mg/L 659 3 10

QUALITY CONTROL DATA

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

QC Batch: 863862 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054001, 60437054002, 60437054003, 60437054005

SAMPLE DUPLICATE: 3420733

Date: 09/22/2023 03:58 PM

60437058001 Dup Max Result Parameter Units RPD RPD Qualifiers Result 6.7 pH at 25 Degrees C 6.8 5 H6 Std. Units 0

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

QC Batch: 863911 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054004

SAMPLE DUPLICATE: 3421007

Date: 09/22/2023 03:58 PM

 Parameter
 Units
 60437056001 Result
 Dup Result
 Max Result
 RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 6.9
 7.0
 1
 5 H6

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

QC Batch: 865020 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054001, 60437054002

METHOD BLANK: 3425423 Matrix: Water

Associated Lab Samples: 60437054001, 60437054002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/19/23 09:06	
Chloride	mg/L	<1.0	1.0	09/19/23 09:06	
Fluoride	mg/L	<0.20	0.20	09/19/23 09:06	
Sulfate	mg/L	<1.0	1.0	09/19/23 09:06	

METHOD BLANK: 3427904 Matrix: Water

Associated Lab Samples: 60437054001, 60437054002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/20/23 19:15	
Chloride	mg/L	<1.0	1.0	09/20/23 19:15	
Fluoride	mg/L	<0.20	0.20	09/20/23 19:15	
Sulfate	mg/L	<1.0	1.0	09/20/23 19:15	

METHOD BLANK: 3427932 Matrix: Water

Associated Lab Samples: 60437054001, 60437054002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/21/23 09:49	
Chloride	mg/L	<1.0	1.0	09/21/23 09:49	
Fluoride	mg/L	<0.20	0.20	09/21/23 09:49	
Sulfate	mg/L	<1.0	1.0	09/21/23 09:49	

LABORATORY CONTROL SAMPLE: 3425424

Date: 09/22/2023 03:58 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L		4.8	96	90-110	
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.4	96	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Sulfate

Date: 09/22/2023 03:58 PM

QUALITY CONTROL DATA

Project: JEC INACTIVE BOTTOM ASH POND C

mg/L

233

100

Pace Project No.: 60437054

LABORATORY CONTROL SAMPL	E: 3427905										
		Spik	e LO	CS	LCS	% R	ec				
Parameter	Unit	ts Con	c. Re	sult	% Rec	Limi	ts (Qualifiers	_		
Bromide	mg/	 L	5	5.2	103	3 9	90-110		_		
Chloride	mg/	Ľ	5	4.9	98	3 9	90-110				
Fluoride	mg/	L	2.5	2.6	104	4 9	90-110				
Sulfate	mg/	Ľ	5	5.1	103	3 9	90-110				
LABORATORY CONTROL SAMPL	E: 3427933										
		Spik	e LO	CS	LCS	% R	ec				
Parameter	Unit	ts Con	c. Re	sult	% Rec	Limi	ts (Qualifiers			
Bromide	mg/	L	5	4.9	98	3 9	90-110		_		
Chloride	mg/	L	5	4.7	94	4 9	90-110				
Fluoride	mg/	L	2.5	2.5	99	9 9	90-110				
Sulfate	mg/	Ľ	5	4.9	98	3 9	90-110				
MATRIX SPIKE & MATRIX SPIKE I	DUPLICATE:	3425425		3425426	3						
		MS	MSD								
	6043633	8001 Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter L	Inits Res	ult Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Bromide n	 ng/L	ND 5	5 5	4.9	4.5	99	90	80-120	9	15	
Chloride n	ng/L	9.4	5 5	15.4	14.0	121	91	80-120	10	15	M1
Fluoride n	ng/L	ND 2.5	5 2.5	2.1	1.9	85	74	80-120	14	15	M1

MATRIX SPIKE SAMPLE:	3425427						
		60437550003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	ND	100	<20.0	0	80-120	M1
Chloride	mg/L	74.6	100	74.8	0	80-120	M1
Fluoride	mg/L	ND	50	<4.0	0	80-120	M1
Sulfate	mg/L	27.0	100	26.1	-1	80-120	M1

100

312

306

73 80-120

15 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

QC Batch: 865021 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60437054003, 60437054004, 60437054005

METHOD BLANK: 3425428 Matrix: Water

Associated Lab Samples: 60437054003, 60437054004, 60437054005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/19/23 20:42	
Chloride	mg/L	<1.0	1.0	09/19/23 20:42	
Fluoride	mg/L	<0.20	0.20	09/19/23 20:42	
Sulfate	mg/L	<1.0	1.0	09/19/23 20:42	

METHOD BLANK: 3427934 Matrix: Water

Associated Lab Samples: 60437054003, 60437054004, 60437054005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/21/23 09:49	
Chloride	mg/L	<1.0	1.0	09/21/23 09:49	
Fluoride	mg/L	< 0.20	0.20	09/21/23 09:49	
Sulfate	mg/L	<1.0	1.0	09/21/23 09:49	

METHOD BLANK: 3428539 Matrix: Water

Associated Lab Samples: 60437054003, 60437054004, 60437054005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/20/23 16:38	
Chloride	mg/L	<1.0	1.0	09/20/23 16:38	
Fluoride	mg/L	<0.20	0.20	09/20/23 16:38	
Sulfate	mg/L	<1.0	1.0	09/20/23 16:38	

METHOD BLANK: 3428677 Matrix: Water

Associated Lab Samples: 60437054003, 60437054004, 60437054005

Date: 09/22/2023 03:58 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<1.0	1.0	09/19/23 20:42	
Chloride	mg/L	<1.0	1.0	09/19/23 20:42	
Fluoride	mg/L	<0.20	0.20	09/19/23 20:42	
Sulfate	mg/L	<1.0	1.0	09/19/23 20:42	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

LABORATORY CONTRO	L SAMPLE:	3425429										
			Spike	LC	S	LCS	% Re	С				
Parameter		Units	Conc.	Res	ult	% Rec	Limit	s	Qualifiers			
Bromide		mg/L		 5	5.2	103	9	0-110		_		
Chloride		mg/L		5	4.9	98	9	0-110				
Fluoride		mg/L	2.	5	2.6	104	. 9	0-110				
Sulfate		mg/L		5	5.1	103	9	0-110				
LABORATORY CONTRO	L SAMPLE:	3427935										
			Spike	LC	S	LCS	% Re	С				
Parameter		Units	Conc.	Res	ult	% Rec	Limits	s	Qualifiers			
Bromide		mg/L		5	4.9	98	9	0-110				
Chloride		mg/L		5	4.7	94		0-110				
Fluoride		mg/L	2.		2.5	99		0-110				
Sulfate		mg/L		5	4.9	98	9	0-110				
LABORATORY CONTRO	L SAMPLE:	3428540										
			Spike	LC		LCS	% Re					
Parameter		Units	Conc.	Res	ult	% Rec	Limit	s (Qualifiers	_		
Bromide		mg/L		5	4.8	95	9	0-110				
Chloride		mg/L		5	4.8	96		0-110				
Fluoride		mg/L	2.		2.4	97		0-110				
Sulfate		mg/L		5	5.1	103	9	0-110				
LABORATORY CONTRO	L SAMPLE:	3428678										
			Spike	LC	S	LCS	% Re	С				
Parameter		Units	Conc.	Res	ult	% Rec	Limit	s (Qualifiers			
Bromide		mg/L		 5	4.9	97	9	0-110		_		
Chloride		mg/L		5	4.9	98	9	0-110				
Fluoride		mg/L	2.	5	2.5	99	9	0-110				
Sulfate		mg/L		5	5.3	105	9	0-110				
					342543	1						
MATRIX SPIKE & MATRIX	X SPIKE DUP	LICATE: 3425	430		342343							
MATRIX SPIKE & MATRI	X SPIKE DUP	LICATE: 3425	430 MS	MSD	342343							
MATRIX SPIKE & MATRI	X SPIKE DUP	LICATE: 3425 60437054003		MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX	X SPIKE DUP Units	60437054003	MS				MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Parameter	Units	60437054003 Result	MS Spike Conc.	Spike Conc.	MS Result	MSD Result	% Rec		Limits		RPD	Qua
Parameter Bromide	Units mg/L	60437054003	MS Spike Conc.	Spike Conc.	MS Result	MSD Result 6.7		% Rec	Limits 80-120	RPD 1 2	$\frac{RPD}{15}$	Qual
	Units	60437054003 Result 1.7	MS Spike Conc.	Spike Conc.	MS Result	MSD Result	% Rec 99	% Rec	80-120 80-120	1	RPD 15 15	Qua

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

MATRIX SPIKE SAMPLE:	3425432						
_		60437056002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	2.7	5	7.1	88	80-120	
Chloride	mg/L	147	5	150	60	80-120	E,M1
Fluoride	mg/L	<0.20	2.5	1.8	70	80-120	M1
Sulfate	mg/L	686	5	681	-101	80-120	E,M1

QUALIFIERS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/22/2023 03:58 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60437054

Date: 09/22/2023 03:58 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60437054001	IBA-1-090623	EPA 200.7	864377	EPA 200.7	864421
60437054002	IBA-2-090623	EPA 200.7	864377	EPA 200.7	864421
60437054003	IBA-3-090623	EPA 200.7	864377	EPA 200.7	864421
60437054004	BA-4-090623	EPA 200.7	864377	EPA 200.7	864421
60437054005	IBA-DUP-090623	EPA 200.7	864377	EPA 200.7	864421
60437054001	IBA-1-090623	EPA 3010	864504	EPA 6010	864575
60437054002	IBA-2-090623	EPA 3010	864504	EPA 6010	864575
60437054003	IBA-3-090623	EPA 3010	864504	EPA 6010	864575
60437054004	BA-4-090623	EPA 3010	864504	EPA 6010	864575
60437054005	IBA-DUP-090623	EPA 3010	864504	EPA 6010	864575
60437054001	IBA-1-090623	EPA 200.8	864501	EPA 200.8	864576
60437054002	IBA-2-090623	EPA 200.8	864501	EPA 200.8	864576
60437054003	IBA-3-090623	EPA 200.8	864501	EPA 200.8	864576
60437054004	BA-4-090623	EPA 200.8	864501	EPA 200.8	864576
60437054005	IBA-DUP-090623	EPA 200.8	864501	EPA 200.8	864576
60437054001	IBA-1-090623	SM 2540C	864073		
60437054002	IBA-2-090623	SM 2540C	864073		
60437054003	IBA-3-090623	SM 2540C	864073		
60437054004	BA-4-090623	SM 2540C	864073		
60437054005	IBA-DUP-090623	SM 2540C	864073		
60437054001	IBA-1-090623	SM 4500-H+B	863862		
60437054002	IBA-2-090623	SM 4500-H+B	863862		
60437054003	IBA-3-090623	SM 4500-H+B	863862		
60437054004	BA-4-090623	SM 4500-H+B	863911		
60437054005	IBA-DUP-090623	SM 4500-H+B	863862		
60437054001	IBA-1-090623	EPA 300.0	865020		
60437054002	IBA-2-090623	EPA 300.0	865020		
60437054003	IBA-3-090623	EPA 300.0	865021		
60437054004	BA-4-090623	EPA 300.0	865021		
60437054005	IBA-DUP-090623	EPA 300.0	865021		

WO#:60437054

50437054

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample C

Revision: 2 Effect	ctive Date: 01/12/2022	Issued By: Lenexa
Client Name: Every Kansas Centra	d	
	PEX □ ECI □ Pace	e □ Xroads □ Client b Other □
Tracking #: Pace	Shipping Label Used? Y	es 🗆 No 🖺
Custody Seal on Cooler/Box Present: Yes No □	Seals intact: Yes f	lo 🗆
Packing Material: Bubble Wrap ☐ Bubble Bags ☐ Thermometer Used: Type of	Foam 🗆 Ice: Wet Blue None	None ☑ Other □
Cooler Temperature (°C): As-read 3,2 Corr. Factor		2 d Date and initials of person
Temperature should be above freezing to 6°C	Corrected 1	examining contents:
Chain of Custody present:	ØYes □No □N/A	111 112
Chain of Custody relinquished:	Øes □No □N/A	
Samples arrived within holding time:	Yes ONO ON/A	
Short Hold Time analyses (<72hr):	□Yes □No □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Oves □No □N/A	
Correct containers used:	ØYes □No □N/A	
	:/	
Pace containers used:		
Containers intact:	Dres ONO ON/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □W/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	dives ONO ON/A	
Samples contain multiple phases? Matrix: W	□Yes ☑No □N/A	
Containers requiring pH preservation in compliance?		ample IDs, volumes, lot #'s of preservative and the ime added.
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#:	620401 date	ille added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
	□Yes □No	
rip Blank present:	□Yes □No □MA	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	☐Yes ☐No ☐M/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
		ield Data Required? Y / N
Person Contacted: Date/Tin	ne:	
Comments/ Resolution:		
roject Manager Review:	Date:	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		0							_																						
	Client Information:	Section B Required Pro	ect Info	mation:						tion C ice Info		n:															Pag	ge:	1	of	1
Company	EVERGY KANSAS CENTRAL, INC.	Report To: Sa	amant	ha Kaney						ntion:			ınts l	-														_			
Address:	Jeffrey Energy Center (JEC)	Copy To: Ja	ke Hu	imphrey, l	aura Hir	nes			Com	pany N	Name:	E۱	/ERC	GY F	(ANS	SAS	CE	NTF	RAL,	INC	REG	ULA	TOR	Y A	GEN	ICY	-				
	818 Kansas Ave, Topeka, KS 66612								Addr				SEC							7		NPD			_		D W	VATE	R [DRINKIN	IG WATER
Email To	skaney@haleyaldrich.com	Purchase Ord	er No.:	10JEC-0	0000477	747				Quote						_			_	\dashv		UST			RC				[OTHER	
Phone:	507-251-2232 Fax:	Project Name:	JE	2 Inactive	Bottom /	Ash Pond	CCR	_		Project	l A	ice	Spille	er, 9	13-5	63-	140	3		+	-	Loca	ation	_	- 110		_				
Request	ed Due Date/TAT:	Project Numbe	er:						Mana Pace	ger: Profile	#: 96	557,	9	_	_	_	_	_		┥	0.0		ATE:	ı		KS					
									_				-			Т		Rea	Hesi	ted 4	nal	/sis F		ᆫ	(Y/N	· _	1				
	Section D Valid Matrix C Required Client Information MATRIX	odes CODE	C=COMP)		COLL	ECTED					Pr	eser	vativ	es.		N /A		I N	Т	П	N					,					
	DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL WIPE AIR	P SL OL WP	(G=GRAB	COMP		COMPOS END/GR	SITE AB	T COLLECTION	ERS							TestI	Metale*	etals**			stals***							ine (Y/N)	604	<i>370</i>	194
ITEM#	(A-Z, 0-9 / ,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	ot ot services	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	HNO₃	모	NaOH	Na ₂ S ₂ O ₃	Methanol	<u> .v</u>	200 7 Total M	Total	300.0 CI, F, S	TDS / pH	6010 Total Metals							Residual Chlorine	Pace	Project i	No./ Lab I.D.
1	IBA-1-090623	v	пG	*		09/06/23	10:00		4	3	1						,	\neg	х	х	х						T	\top			
2	IBA-2-090623	W	тG	- 2		09/06/23	10:50	2	4	3	_ 1							X	x	х	х										
3	IBA-3-090623	W	тG	- 3		09/06/23	12:30		4	3	1	L	Ш	_				×	×	x	х							\perp			
4	IBA-4-090623	v	пG		-0	09/06/23	15:35	:	4	3	_ 1		Ш	1				×	×	x	х		1					\perp			
5	IBA-DUP-090623	v	тG	-		09/06/23	10:50	72	4	3	_ 1	_	Ш	4	4	1		X	X	х	х	_	4	L			4	4			
6			-	-					L	Н	+	╄	Н	4	+	1	L	1	\perp	Ц	4		╄	╙	Ш	_	4	4			
7			_					_		Н	+	_	Н	4	_	1	L	1	_	Ш	4	_		┡			4	4			
8			+	-					<u> </u>	\vdash	+	╀	Н	4	+	-	L	-	┡	Н	_	_	+	┝	Ш	_	4	4			
9			+	-					⊢	+	+	╄	Н	-	+	4	L	-	╀	Н	4	-	+	╀	Ш	-	4	+			
10			+	-				-	┢	+	+	╀	Н	4	+	-	\vdash	+	╀	Н	-	+	+	┾	Н	_	+	+			
11			+	-	_			-	-	+	+	╁	H	+	+	-	\vdash	+	\vdash	H	-	+	╁	⊢	Н	-	+	+			
12	ADDITIONAL COMMENTS		LINOU	ISHED BY	ACCULAT	ION	DATE		١.	TIME	+	_		100	EPTE		<u> </u>	EEN L	ATIO		+	DAT		┢	TIME	\dashv	_		CAMI	LE CONDIT	TIONE
200.7 To	tal Metals*: B, Ba, Ca					1014	DAIL		-		+										+			1		-) A	<u> </u>	JAMI	EE CONDI	T
200.8 To	tal Metals**: Co, Mo		Jas	on R. Fran	cs / SCS		9/7/23	3	1	16:00	+			J	A		1	((4	917	125	10	} }	, 1	احد	4	Y	J-	
	al Metals***: Li								1		_										-			-		_	_	_			
5010101	armetalo . El								_		_							_						┺		_	_	4			
Pag						ER NAME A																					ပ်		uo 🗦	ly ooler	nlact
Page 31 of 32						PRINT Nam SIGNATURI				on R.	Fran	ks	Λ		1			DATE									Temp in °C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
of 32									- 19	/_	K		9	-	1	_		(MM/I	DD/Y	Y):			9/7/2	23			_			S] ő

			and the second second
Client:	Everal	Kungas	Central
		1	

Profile # 4657

site: JEC Inactive Bottom Ach Pord CLE

Notes

COC Line Item	Matrix	VG9H	реэн	DG9G	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	врзг	BP3S	врзс	BP3Z	WPDU	ZPLC	Other		
1	WT																		1		2		1									
2	11													-			-			100	a		1									
3																			- 1		2		1									
4																			1		2		1									
5																			1		2											
6																																
7																																
8																																
9																																
10	,																														u .	
11																																
12																																

Container Codes

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		HIGHE
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water

BP4U BP4N

BP4S

WPDU

125mL HNO3 plastic

125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

60437094

ATTACHMENT 2-2

December 2023 Annual Assessment Sampling Event

Laboratory Analytical Report

January 09, 2024

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on December 12, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

REVISED to include QC sheets with report package. No data was changed.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com (913)599-5665

Alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950

Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification

Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391

Kansas Certification #: E-10358

Kentucky Certification #: KY90133

KY WW Permit #: KY0098221

KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010

Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification #: 9991

Missouri Certification #: 235

Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572023-03

New Hampshire/TNI Certification #: 297622

New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18

Utah/TNI Certification #: PA014572223-14

USDA Soil Permit #: 525-23-67-77263

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198 Washington Certification #: C868

West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60443832001	IBA-1-121223	Water	12/12/23 09:50	12/12/23 16:15
60443832002	IBA-2-121223	Water	12/12/23 10:35	12/12/23 16:15
60443832003	IBA-3-121223	Water	12/12/23 11:15	12/12/23 16:15
60443832004	IBA-4-121223	Water	12/12/23 12:15	12/12/23 16:15
60443832005	JEC-IBA-DUP-121223	Water	12/12/23 11:15	12/12/23 16:15

SAMPLE ANALYTE COUNT

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60443832001	IBA-1-121223	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443832002	IBA-2-121223	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443832003	IBA-3-121223	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443832004	IBA-4-121223	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60443832005	JEC-IBA-DUP-121223	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: January 09, 2024

General Information:

5 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: January 09, 2024

General Information:

5 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.

Date: January 09, 2024

General Information:

5 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Sample: IBA-1-121223 PWS:	Lab ID: 6044 Site ID:	3832001 Collected: 12/12/23 09:50 Sample Type:	Received:	12/12/23 16:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.0640 ± 0.332 (0.689) C:NA T:90%	pCi/L	01/03/24 12:33	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.562 ± 0.429 (0.852) C:85% T:83%	pCi/L	01/02/24 12:17	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.626 ± 0.761 (1.54)	pCi/L	01/04/24 10:3	1 7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Sample: IBA-2-121223 PWS:	Lab ID: 6044 : Site ID:	3832002 Collected: 12/12/23 10:35 Sample Type:	Received:	12/12/23 16:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.193 ± 0.294 (0.472) C:NA T:88%	pCi/L	01/03/24 12:33	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	-0.00370 ± 0.365 (0.844) C:84% T:84%	pCi/L	01/02/24 12:17	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.193 ± 0.659 (1.32)	pCi/L	01/04/24 10:31	7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Sample: IBA-3-121223 PWS:	Lab ID: 60443 Site ID:	3832003 Collected: 12/12/23 11:15 Sample Type:	Received:	12/12/23 16:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.0646 ± 0.457 (0.912) C:NA T:89%	pCi/L	01/03/24 12:47	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.520 ± 0.435 (0.883) C:82% T:86%	pCi/L	01/02/24 12:17	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.585 ± 0.892 (1.80)	pCi/L	01/04/24 10:31	1 7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Sample: IBA-4-121223 PWS:	Lab ID: 6044 Site ID:	3832004 Collected: 12/12/23 12:15 Sample Type:	Received:	12/12/23 16:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.395 ± 0.607 (1.04) C:NA T:85%	pCi/L	01/03/24 12:47	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.431 ± 0.359 (0.720) C:82% T:85%	pCi/L	01/02/24 12:17	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.826 ± 0.966 (1.76)	pCi/L	01/04/24 10:3	1 7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Sample: JEC-IBA-DUP-121223 PWS:	Lab ID: 6044 Site ID:	3832005 Collected: 12/12/23 11:15 Sample Type:	Received:	12/12/23 16:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.0623 ± 0.440 (0.878) C:NA T:86%	pCi/L	01/03/24 12:47	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	-0.00983 ± 0.264 (0.622) C:82% T:88%	pCi/L	01/02/24 12:17	7 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.0623 ± 0.704 (1.50)	pCi/L	01/04/24 10:31	1 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

QC Batch: 637321 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60443832001, 60443832002, 60443832003, 60443832004, 60443832005

METHOD BLANK: 3108421 Matrix: Water

Associated Lab Samples: 60443832001, 60443832002, 60443832003, 60443832004, 60443832005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0489 ± 0.223 (0.454) C:NA T:89%
 pCi/L
 01/03/24 12:33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

QC Batch: 637323 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60443832001, 60443832002, 60443832003, 60443832004, 60443832005

METHOD BLANK: 3108426 Matrix: Water

Associated Lab Samples: 60443832001, 60443832002, 60443832003, 60443832004, 60443832005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.188 ± 0.326 (0.711) C:80% T:85%
 pCi/L
 01/02/24 12:16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 01/09/2024 02:21 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC INACTIVE BOTTOM ASH POND C-Revised Report

Pace Project No.: 60443832

Date: 01/09/2024 02:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60443832001	IBA-1-121223	EPA 903.1	637321		
60443832002	IBA-2-121223	EPA 903.1	637321		
60443832003	IBA-3-121223	EPA 903.1	637321		
60443832004	IBA-4-121223	EPA 903.1	637321		
60443832005	JEC-IBA-DUP-121223	EPA 903.1	637321		
60443832001	IBA-1-121223	EPA 904.0	637323		
60443832002	IBA-2-121223	EPA 904.0	637323		
60443832003	IBA-3-121223	EPA 904.0	637323		
60443832004	IBA-4-121223	EPA 904.0	637323		
60443832005	JEC-IBA-DUP-121223	EPA 904.0	637323		
60443832001	IBA-1-121223	Total Radium Calculation	640112		
60443832002	IBA-2-121223	Total Radium Calculation	640112		
60443832003	IBA-3-121223	Total Radium Calculation	640112		
60443832004	IBA-4-121223	Total Radium Calculation	640112		
60443832005	JEC-IBA-DUP-121223	Total Radium Calculation	640112		

WO#:60443832

DC#_Title: ENV-FRM-LENE-0009_Sample Co

Pace					
ANALYTICAL SERVICES	Revision: 2	Effective Date: 01/12/2	2022 Iss	ued By: Lenexa	
Client Name: E	vergy Ks Cen	tral			
	S □ VIA □ Clay □		Pace □	Xroads ☐ Client ☐	Other □
Tracking #:		Pace Shipping Label Use	ed? Yes □	No/G	
Custody Seal on Cooler/Bo	ox Present: Yes □ No./	Z			
-	ble Wrap □ Bubble B		None		
•	_ '	pe of Ice: Web Blue N	,		
Cooler Temperature (°C):		Factor -0-3 Correc	cted O	3 Date and	initials of person g contents:
Temperature should be above from	-			DU	12/13/23
110		ZYes □No □N/A			1-11-07-00
Chain of Custody present:		/,			
Chain of Custody relinquishe	od:	Yes \(\sum \text{No} \(\sum \text{N/A} \)			
Samples arrived within holding	ng time:	Yes No N/A			
Short Hold Time analyses ((<72hr):	□Yes INo □N/A			
Rush Turn Around Time re	quested:	□Yes ZNo □N/A			
Sufficient volume:		Yes No N/A			
Correct containers used:		ØYes □No □N/A			
		//			
Pace containers used:		/ /			
Containers intact:		Yes No N/A			
Unpreserved 5035A / TX100	5/1006 soils frozen in 48hrs	? ☐Yes ☐No ☐N/A			
Filtered volume received for	dissolved tests?	□Yes □No □N/A			
Sample labels match COC: [Date / time / ID / analyses	AYes □No □N/A			
Samples contain multiple pha		Yes No ON/A			
Containers requiring pH pres		ZYes □No □N/A	List samp	ele IDs, volumes, lot #'s c	of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9	·	1000	date/time	added.	
(Exceptions: VOA, Micro, O&G,		LOT#: 6 //87	-		
Cyanide water sample check Lead acetate strip turns dark		□Yes □No			
Potassium iodide test strip tu	• • • • • • • • • • • • • • • • • • • •	□Yes □No			
Trip Blank present:		□Yes □No □N/A			
	imana).	□Yes □No ZN/A	1		
Headspace in VOA vials (>6		1			
Samples from USDA Regula	ted Area: State:	□Yes □No ☑N/A	-		
Additional labels attached to			-		
Client Notification/ Resolut		COC to Client? Y / N	Field	Data Required? Y /	N
Person Contacted:		Date/Time:			
Comments/ Resolution:			_		

Date:

Project Manager Review:

23

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section	Δ	Section I										_															_				
	Client Information:	Required		t Infor	mation:						tion ice Inf	C format	ion:														ı	Page:	1	of	1
Compan	EVERGY KANSAS CENTRAL, INC.	Report To:	Jak	e Hur	nphrey					_	ntion:			ounts	Pa:	yabl	е				7						-				
Address:	400 E Van Buren St	Сору То:	Lau	ra Hi	nes, Sam	antha Ka	aney			Com	pany	Name	: E	VEF	RGY	KAI	NSA	S CE	NTR.	AL, IN	ICRE	GUL	ATO	RY A	\GE	NC	Υ				
	Suite 545 Phoenix,AZ 85004	1								Addr	_					ON A	_				╁╴		_	_	_	_	_	D WAT	TER [DRINKIN	G WATER
Email To	doberbroeckling@haleyaldrich.com	Purchase	Order	No.:	10JEC-0	0000477	747		_		Quote	e	_			_				_	┨┌	US			R					OTHER	O WALLE
Phone:	507-251-2232 Fax:	Project Na	ıme:	JEC	Inactive	Bottom /	Ash Pond	CCR		Pace	Project	ct /	Alice	e Spi	ller.	913	-563	3-140)3		-	ite Lo	_	_		010	`_	_	<i>'''''''''''''''''''''''''''''''''''''</i>		
Request	ed Due Date/TAT:	Project Nu	ımber.						_	Mana Pace	ger: Profile	e#: ç									┨"		ATE	1		K	S				
<u> </u>									_		_	_	_	_	_		Т		Regu	este	d Ana		_		(Y/	N)		<i>''</i> ////			
	Section D Valid Matrix (Required Client Information MATRIX DRINKING WATER	CODE	es to left)	C=COMP)		COLL	ECTED		z			P	rese	erva	tives			N /×				ll yolo		N	Ť	T	1				
	WATER WASTE WATER PRODUCT SOIL/SOLID OIL	WT WW P SL OL	(see valid codes to left)	(G=GRAB C=	COMP STA		COMPO END/GR	SITE RAB	COLLECTIO	ပ္ဆ								<u>.</u>									940				
ITEM #	SAMPLE ID (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE WIPE AND OTHER TISSUE	WP AR OT TS	MATRIX CODE	SAMPLE TYPE (G	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO₄	SONE C	NaOH	Na ₂ S ₂ O ₃	Methanol		↓Analysis Test↓						Radium 226	Radium 228	Total Radium	Sadium Of She	Residual Chlorine (Y/N)	(OD	4438	32 lo./ Lab I.D.
1	IBA-1-121223		WT	_	DATE.	THE STATE OF THE S	12/12/23	9:50	17.5	2	$\overline{}$		2	+	늘		4	7	+		+-	\vdash	+	X	1	-	_	\neg	rac	e r roject r	10.7 Lab 1.D.
2	IBA-2-121223		WT	1			12/12/23	10:35	Ť.	2	$\overline{}$	-	2	\dagger	\vdash	\Box	1	H	\top		1	\Box	$^{+}$	T _x	-	\neg		-			
3	IBA-3-121223		WT		/#:		12/12/23	11:15	7.0	2			2	T	T	H	1						7	T _x			_	+			
4	IBA-4-121223		WT	G	Vig.	- 44	12/12/23	12:15	245	2			2			П								×	1	1-	_	\neg	İ		
5	JEC-IBA-DUP-121223		WT	G	1 22	- 1	12/12/23	11:15		2			2											X	X	X		x			
6																										I		T			
7																									I						
8																															
9																															
10																															
-11																															
12																															
	ADDITIONAL COMMENTS		REL	INQUI	SHED BY	AFFILIAT	ION	DAT	E		TIME				AC	CEP	TED E	BY / A	FFILIA	TION		D	ATE		TIN	1E			SAN	IPLE CONDIT	IONS
(2) 1L nit notes)	ric preserved for all Radium analysis (Pace PM-see pr	ofile	ı	Matt \	/anderPut	ten / SCS		12/12	23	1	16:00				7	A	۴	901	e			12/	บเ	3 1	61	5	<	o.3	Y	N	Y
										\vdash		+	_											+			+				
										\vdash		+												+			+				
L_P _c			-			SAMPLI	ER NAME A	ND SIGN	ATUF	E E																	+	ပ္	E .	je je	got
Page 1							PRINT Nam	e of SAMI	LER	Mat	tt Va	nder	Putt	en	_												-	.⊑	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
8			PRINT Name of SAMPLER: Matt VanderPutten SIGNATURE of SAMPLER: Matt VanderPutten (MM/DD/VY):														12/1	2/23				Temp	Reck	Seale C) Samp						

Client:	Evergy	KS	Central	Profile#		9657	-2	_
Site:				Notes	109	SI-RAD	SI-RADUZ	

COC	Matrix	VG9H	реэн	DG9G	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗЕ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
	WT				_>_	-			<u> </u>	٩	_ ₹	₹	< _	<_	< _	<u> </u>	5		В	8	8	2	Ē	B	<u>B</u>	▣	<u> </u>	3	N	ŏ	
2	1																														
3																						+									
4																						+				_			-		
5	V																					T									 -
6	.5																					_									
7																															
8																															
9																															
10																															
11																															
12																															

Container Codes

Glass					Plastic	Misc.		
OG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic		Wipe/Swab	
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate	
G9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag	
G9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter	
G9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	c	Air Cassettes	
G9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit	
G9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	Īυ	Summa Can	
/G9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		100	
/G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	7		
/G9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate			
3G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic	1	Matrix	
IG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water	
IG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid	
IG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid	
VGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL	
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe	
				BP4U	125mL unpreserved plastic	DW	Drinking Water	
				BP4N	125mL HNO3 plastic			
				BP4S	125mL H2SO4 plastic	1		
				WPDU	16oz unpresserved plstic	7		

Work Order Number:

n	terna	al Transfer Ch	nain c	of Custod	у —		****			·····												
					ultiplier) Pre-Logged		nC			of Orig			Yes	Γ	¬ N	^				(-	Pa	Ce
Wo	rkorder	:: 60443832 Work	order N		ACTIVE BOTT									12/			Resu	ılts R	eaues	sted By	/: 12/2	2/2023
Rep	ort To			Subcontrac			•										Analys				/	3
Pac 960 Len	8 Loiret l exa, KS	ical Kansas Blvd.		1638 F Suites Green:	Analytical Pittsb Roseytown Roa 2,3, & 4 sburg, PA 1560 (724)850-5600	d 01	P	reserved C	ontai	ners	226/228 Combined + QC	Radium 226	Radium 228									÷
Item	Sample	1D	Sample Type	Collect Date/Time	Lab ID	Matrix (HNO3		nderde betreiten der		Radium ?	NATIONAL PROPERTY OF THE PROPE				стисической в менее поставление поставлен	***************************************				LAB US	E ONLY
1	IBA-1-121	223	PS	12/12/2023 09:50	60443832001	Water	2				Х	Х	Х								(∞)	
2	IBA-2-121	223	PS	12/12/2023 10:35	60443832002	Water	2	**************************************	relationship		Х	Х	X			-					002	•
3	IBA-3-121	223	PS	12/12/2023 11:15	60443832003	Water	2			***************************************	X	Х	Х								ω3	
4	IBA-4-121	223	PS	12/12/2023 12:15	60443832004	Water	2		omment.		Х	Х	Х			000					004	
5	JEC-IBA-I	DUP-121223	PS	12/12/2023 11:15	60443832005	Water	2		alle de Arrèche	- San	X	X	X			00000					m S)
1 2 3	sfers	Released By			Received B	ug b			Ē	ate/Tin	23 (°	Y37	ک			tion	ı: 60-f		11DWE			
Coc	oler Ten	nperature on Receipt		<u>°C Cus</u>	tody Seal Y	or (`N	()	Re	ceiv	ed or	ı lce	Y	or	(N))	Section 1		Samp	oles Ir	ntact `	Y or N	

WO#: 30647694

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace'	DC#_Title: ENV-FRM-C Pittsburgh Effective Date: 09/20/2023	BUF	8-008	8 v06		:30647694
Client Name:	Pace - KS					PACE_60_LEKS
Tracking Number Custody Seal on Thermometer U	Ex	3 9 es ⊡n7 e of Ic	ó e: W	Seals I	ace Other Intact: Yes INo Unit None ction Factor:	Examined By: 45 12/17/2/3 Labeled By: 45 12/18/28 Temped By:
Temp should be abo	ve freezing to 6°C			T		D.P.D. Residual Chlorine Lot #
Comments:		Yes	No	NA	1000134	
Chain of Custod	y Present	-			1.	
Chain of Custod	•			ļ	2.	
-Were client	corrections present on COC					
Chain of Custod	· · · · · · · · · · · · · · · · · · ·				3.	
	& Signature on COC:		سس	ļ	4.	
Sample Labels m				<u></u>	5.	
-Includes da	te/time/ID					
Matrix:		<u> </u>	51			
	within Hold Time:				6.	
Short Hold Time	Analysis (<72hr				7.	
remaining):			نسسن	ļ		
	nd Time Requested:	ļ			8.	
Sufficient Volum				<u> </u>	9.	
Correct Containe				ļ	10.	
-Pace Conta					44	
Containers Intac		-			11.	
Orthophosphate					12.	
	samples field filtered:	<u> </u>			14:	
	checked for dechlorination				15:	
	received for dissolved tests:				16.	
	necked for preservation:	L /		<u> </u>		
•	VOA, coliform, TOC, O&G, adon, non-aqueous matrix				PHCA	
All containers m requiremen	eet method preservation ts:				Initial when completed Lot# of added Preservative	Date/Time of Preservation
8260C/D: Heads	pace in VOA Vials (> 6mm)				17.	
	ce in VOA Vials (0mm)				18.	
Trip Blank Presei	nt:				Trip blank custody s	seal present? YES or NO
•	eened <.05 mrem/hr.			~	Initial when Date:)-15-23 Survey Meter SN: 2504350
Comments:						

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

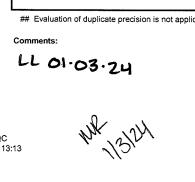
Quality Control Sample Performance Assessment

Ra-226 Test: Analyst: MAR1 Date: 12/21/2023 76937 DW Batch ID: Matrix:

Method Blank Assessment MB Sample ID 3108421 MB concentration: -0.049 M/B Counting Uncertainty: 0.166 MB MDC: 0.454 MB Numerical Performance Indicator: -0.58 MB Status vs Numerical Indicator: MB Status vs. MDC: N/A

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS76937	LCSD76937
Count Date:	1/3/2024	1/3/2024
Spike I.D.:	23-013	23-013
Spike Concentration (pCi/mL):	32.278	32.278
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):		0.653
Target Conc. (pCi/L, g, F):	4.937	4.943
Uncertainty (Calculated):	0.232	0.232
Result (pCi/L, g, F):	6.377	5.665
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.219	1.044
Numerical Performance Indicator:	2.27	1.32
Percent Recovery:	129.17%	114.59%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	133%	133%
Lower % Recovery Limits:	73%	73%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below RL?	5.665	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator:	0.870	
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	11.96%	
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	N/A Pass 32%	


Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS i.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Ra-226 NELAC QC Printed: 1/3/2024 13:13

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-228
Analyst:	JJS1
Date:	12/28/2023
Worklist:	76938
Matrix:	WT

Method Blank Assessmer	nt	
	MB Sample ID	3108426
	MB concentration:	0.188
1	M/B 2 Sigma CSU:	0.326
	MB MDC:	0.711
	MB Numerical Performance Indicator:	1.13
1	MB Status vs Numerical Indicator:	Pass
	MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS76938	LCSD76938
Count Date:	1/2/2024	1/2/2024
Spike I.D.:	23-043	23-043
Decay Corrected Spike Concentration (pCi/mL):	38.407	38.407
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.815	0.818
Target Conc. (pCi/L, g, F):	4.712	4.698
Uncertainty (Calculated):	0.231	0.230
Result (pCi/L, g, F):	4.376	4.103
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.041	0.954
Numerical Performance Indicator:	-0.62	-1.19
Percent Recovery:	92.87%	87.32%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%
Lower % Recovery Limits:	60%	60%
Duplicate Sample Assessment		
Sample I.D.:	LCS76938	Enter Duplicate
Duplicate Sample I.D.	LCSD76938	sample IDs if
Sample Result (pCi/L, g, F):	4.376	other than
Sample Result 2 Sigma CSU (pCi/L, g, F):	1.041	LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	4.103	the space below.
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	0.954	1 1
Are sample and/or duplicate results below RL?	NO	
Duplicate Numerical Performance Indicator:	0.379	
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	6.16%	
Duplicate Status vs Numerical Indicator:	Pass	

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		1
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		İ
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:	l	<u> </u>
		,

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

% RPD Limit:

Pass

36%

Duplicate Status vs RPD:

Comments:

MRH +3-24

December 23, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on December 12, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Kansas City
- Pace Analytical Services Salina

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Nevada Certification #: KS000212023-1 Missouri Inorganic Drinking Water Certification #: 10090 Oklahoma Certification #: 2022-057

Arkansas Drinking Water

Arkansas Certification #: 88-00679

Arkansas Certification #: T104704407-23-17

Arkansas Certification #: 88-00679 Texas Certification #: T104704407-23-17 Illinois Certification #: 2000302023-5 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas/NELAP Certification #: E-10116 Kansas Field Laboratory Accreditation: # E-92587 Louisiana Certification #: 03055 Missouri SEKS Micro Certification: 10070

Pace Analytical Services Salina

528 N 9th Street, Salina, KS 67401 Oklahoma: 2022-055
Texas NELAP: T104704246-22-14 Kansas: Cert No. E-10146

SAMPLE SUMMARY

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60443833001	IBA-1-121223	Water	12/12/23 09:50	12/12/23 16:15
60443833002	IBA-2-121223	Water	12/12/23 10:35	12/12/23 16:15
60443833003	IBA-3-121223	Water	12/12/23 11:15	12/12/23 16:15
60443833004	IBA-4-121223	Water	12/12/23 12:15	12/12/23 16:15
60443833005	JEC-IBA-DUP-121223	Water	12/12/23 11:15	12/12/23 16:15

SAMPLE ANALYTE COUNT

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60443833001	IBA-1-121223	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443833002	IBA-2-121223	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443833003	IBA-3-121223	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
60443833004	IBA-4-121223	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA
0443833005	JEC-IBA-DUP-121223	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	MRV	1	PASI-K
		EPA 300.0	MLL	1	PASI-SA

PASI-K = Pace Analytical Services - Kansas City PASI-SA = Pace Analytical Services - Salina

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: December 23, 2023

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: December 23, 2023

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: December 23, 2023

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

JEC INACTIVE BOTTOM ASH POND C Project:

Pace Project No.: 60443833

Method: EPA 245.1 **Description: 245.1 Mercury**

Client: Evergy Kansas Central, Inc.

Date: December 23, 2023

General Information:

5 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Evergy Kansas Central, Inc.
Date: December 23, 2023

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Salina. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 877737

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60443319001,60443807002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3476689)
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

Sample: IBA-1-121223	Lab ID: 6044	43833001	Collected: 12/12/2	23 09:50	Received: 12	2/12/23 16:15 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	l Services -	Kansas City					
Barium, Total Recoverable	0.031	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:13	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 14:13	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:13	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:13	7439-92-1	
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010							
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.020	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:37	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Me	thod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:05	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:05	7440-38-2	
Cadmium, Total Recoverable	< 0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:05	7440-43-9	
Cobalt, Total Recoverable	0.0014	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:05	7440-48-4	
Molybdenum, Total Recoverable	0.0082	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:05	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:05	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:05	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Me	thod: EF	PA 245.1			
•	Pace Analytica							
Mercury	<0.20	ug/L	0.20	1	12/20/23 16:25	12/21/23 15:10	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
· · ·	Pace Analytica							
Fluoride	0.27	mg/L	0.20	1		12/20/23 15:28		

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

Sample: IBA-2-121223	Lab ID: 6044	13833002	Collected: 12/12/2	23 10:35	Received: 12	2/12/23 16:15 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.026	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:19	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 14:19	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:19	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:19	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	nod: EP	A 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	0.023	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:43	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:08	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:08	7440-38-2	
Cadmium, Total Recoverable	< 0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:08	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:08	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:08	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:08	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:08	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
·	Pace Analytical							
Mercury	<0.20	ug/L	0.20	1	12/20/23 16:25	12/21/23 15:12	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytical							
Fluoride	0.37	mg/L	0.20	1		12/20/23 15:42	1608/-/8-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

Sample: IBA-3-121223	Lab ID: 604	43833003	Collected: 12/12/2	23 11:15	Received: 12	/12/23 16:15 N	fatrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EP	A 200.7				
	Pace Analytica	l Services -	Kansas City						
Barium, Total Recoverable	0.019	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:21	7440-39-3		
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 14:21	7440-41-7		
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:21	7440-47-3		
_ead, Total Recoverable	<0.010	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:21	7439-92-1		
6010 MET ICP	Analytical Meth	Analytical Method: EPA 6010 Preparation Method: EPA 3010							
	Pace Analytica	l Services -	Kansas City						
Lithium, Total Recoverable	0.024	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:45	7439-93-2		
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8								
	Pace Analytica	l Services -	Kansas City						
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:21	7440-36-0		
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:21	7440-38-2		
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:21	7440-43-9		
Cobalt, Total Recoverable	0.0013	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:21	7440-48-4		
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:21	7439-98-7		
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:21	7782-49-2		
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:21	7440-28-0		
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EP	A 245.1				
•	Pace Analytica								
Mercury	<0.20	ug/L	0.20	1	12/20/23 16:25	12/21/23 15:15	7439-97-6		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0						
	Pace Analytica								
Fluoride	0.25	mg/L	0.20	1		12/20/23 16:25			

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

Sample: IBA-4-121223	Lab ID: 6044	43833004	Collected: 12/12/2	23 12:15	Received: 12	/12/23 16:15 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EP	PA 200.7			
	Pace Analytica	l Services -	Kansas City					
Barium, Total Recoverable	0.021	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:23	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 14:23	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:23	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:23	7439-92-1	
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010							
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.037	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:47	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EP	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:25	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:25	7440-38-2	
Cadmium, Total Recoverable	< 0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:25	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:25	7440-48-4	
Molybdenum, Total Recoverable	0.0019	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:25	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:25	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:25	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EP	PA 245.1			
•	Pace Analytica							
Mercury	<0.20	ug/L	0.20	1	12/20/23 16:25	12/21/23 15:17	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
· · ·	Pace Analytica							
Fluoride	0.55	mg/L	0.20	1		12/20/23 16:39		

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

Sample: JEC-IBA-DUP-121223	Lab ID: 6044	13833005	Collected: 12/12/2	23 11:15	Received: 12	/12/23 16:15 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EP	A 200.7			
	Pace Analytica	Services -	Kansas City					
Barium, Total Recoverable	0.018	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:25	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/20/23 14:25	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	12/15/23 07:41	12/20/23 14:25	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:25	7439-92-1	
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010							
	Pace Analytica	Services -	Kansas City					
Lithium, Total Recoverable	0.023	mg/L	0.010	1	12/15/23 07:41	12/20/23 14:49	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EP	A 200.8			
	Pace Analytica	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:28	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:28	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/15/23 07:41	12/18/23 14:28	7440-43-9	
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:28	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:28	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:28	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/15/23 07:41	12/18/23 14:28	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EP	A 245.1			
•	Pace Analytica							
Mercury	<0.20	ug/L	0.20	1	12/20/23 16:25	12/21/23 15:28	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytica							
Fluoride	0.24	mg/L	0.20	1		12/20/23 16:54		

QUALITY CONTROL DATA

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Mercury

Date: 12/23/2023 11:17 AM

QC Batch: 877872 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

METHOD BLANK: 3477252 Matrix: Water

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 12/21/23 15:01

LABORATORY CONTROL SAMPLE: 3477253

 Parameter
 Units
 Spike Conc.
 LCS Result
 LCS % Rec Limits
 Qualifiers

 ug/L
 5
 4.6
 92
 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3477254 3477255

MS MSD

60443833004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits <0.20 5 20 Mercury ug/L 5 4.4 4.6 89 91 70-130 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Analysis Method:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

QC Batch: 877232

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

EPA 200.7

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

METHOD BLANK: 3474527 Matrix: Water

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	12/20/23 14:09	
Beryllium	mg/L	< 0.0010	0.0010	12/20/23 14:09	
Chromium	mg/L	< 0.0050	0.0050	12/20/23 14:09	
Lead	mg/L	< 0.010	0.010	12/20/23 14:09	

LABORATORY CONTROL SAMPLE:	3474528	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	1	1.0	104	85-115	
Beryllium	mg/L	1	1.1	107	85-115	
Chromium	mg/L	1	1.1	107	85-115	
Lead	mg/L	1	1.1	111	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3474	529		3474530							
			MS	MSD								
	6	60443833001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.031	1	1	1.0	1.1	101	107	70-130	6	20	
Beryllium	mg/L	< 0.0010	1	1	1.1	1.1	105	108	70-130	2	20	
Chromium	mg/L	< 0.0050	1	1	1.0	1.1	105	107	70-130	2	20	
Lead	mg/L	<0.010	1	1	1.0	1.1	104	106	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

QC Batch: 877233 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

METHOD BLANK: 3474531 Matrix: Water

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.0010	0.0010	12/18/23 13:59	
Arsenic	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Cadmium	mg/L	< 0.00050	0.00050	12/18/23 13:59	
Cobalt	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Molybdenum	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Selenium	mg/L	< 0.0010	0.0010	12/18/23 13:59	
Thallium	mg/L	< 0.0010	0.0010	12/18/23 13:59	

Date: 12/23/2023 11:17 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	mg/L	0.04	0.040	99	85-115	
Arsenic	mg/L	0.04	0.041	102	85-115	
Cadmium	mg/L	0.04	0.041	103	85-115	
Cobalt	mg/L	0.04	0.041	102	85-115	
Molybdenum	mg/L	0.04	0.039	98	85-115	
Selenium	mg/L	0.04	0.041	103	85-115	
Thallium	mg/L	0.04	0.040	100	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 3474	533		3474534							
			MS	MSD								
	(60443833002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	<0.0010	0.04	0.04	0.039	0.039	97	98	70-130	1	20	
Arsenic	mg/L	< 0.0010	0.04	0.04	0.040	0.041	99	101	70-130	2	20	
Cadmium	mg/L	< 0.00050	0.04	0.04	0.037	0.038	93	94	70-130	1	20	
Cobalt	mg/L	< 0.0010	0.04	0.04	0.040	0.041	98	100	70-130	1	20	
Molybdenum	mg/L	0.0023	0.04	0.04	0.043	0.043	101	102	70-130	1	20	
Selenium	mg/L	< 0.0010	0.04	0.04	0.039	0.039	98	99	70-130	0	20	
Thallium	mg/L	<0.0010	0.04	0.04	0.038	0.038	95	96	70-130	1	20	

MATRIX SPIKE SAMPLE:	3474535						
		60443807003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	<0.0010	0.04	0.038	94	70-130	
Arsenic	mg/L	0.010	0.04	0.051	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

MATRIX SPIKE SAMPLE:	3474535						
Parameter	Units	60443807003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Cadmium	 mg/L	<0.00050	0.04	0.035	87	70-130	
Cobalt	mg/L	0.0011	0.04	0.041	101	70-130	
Molybdenum	mg/L	0.16	0.04	0.20	109	70-130	
Selenium	mg/L	< 0.0010	0.04	0.041	103	70-130	
Thallium	mg/L	< 0.0010	0.04	0.038	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

QC Batch: 877231 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

METHOD BLANK: 3474523 Matrix: Water

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 12/20/23 14:33

LABORATORY CONTROL SAMPLE: 3474524

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium mg/L 1.0 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3474525 3474526

MS MSD

60443833001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.020 107 20 Lithium mg/L 1.1 1.1 110 75-125 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Fluoride

Date: 12/23/2023 11:17 AM

QC Batch: 877737 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Salina

0.20

12/20/23 13:35

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

METHOD BLANK: 3476687 Matrix: Water

Associated Lab Samples: 60443833001, 60443833002, 60443833003, 60443833004, 60443833005

mg/L

Blank Reporting

ND

Parameter Units Result Limit Analyzed Qualifiers

LABORATORY CONTROL SAMPLE: 3476688

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Fluoride 2.5 2.5 99 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3476689 3476690

MS MSD

60443319001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual 15 M1 Fluoride mg/L 0.72 2.5 2.5 2.7 2.7 78 80 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3476691 3476692

MS MSD

60443807002 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Fluoride 3.7 2.5 6.2 2.5 6.3 104 102 15 mg/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/23/2023 11:17 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60443833

Date: 12/23/2023 11:17 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60443833001	IBA-1-121223	EPA 200.7	877232	EPA 200.7	877245
60443833002	IBA-2-121223	EPA 200.7	877232	EPA 200.7	877245
60443833003	IBA-3-121223	EPA 200.7	877232	EPA 200.7	877245
60443833004	IBA-4-121223	EPA 200.7	877232	EPA 200.7	877245
60443833005	JEC-IBA-DUP-121223	EPA 200.7	877232	EPA 200.7	877245
60443833001	IBA-1-121223	EPA 3010	877231	EPA 6010	877246
60443833002	IBA-2-121223	EPA 3010	877231	EPA 6010	877246
60443833003	IBA-3-121223	EPA 3010	877231	EPA 6010	877246
60443833004	IBA-4-121223	EPA 3010	877231	EPA 6010	877246
60443833005	JEC-IBA-DUP-121223	EPA 3010	877231	EPA 6010	877246
60443833001	IBA-1-121223	EPA 200.8	877233	EPA 200.8	877247
60443833002	IBA-2-121223	EPA 200.8	877233	EPA 200.8	877247
60443833003	IBA-3-121223	EPA 200.8	877233	EPA 200.8	877247
60443833004	IBA-4-121223	EPA 200.8	877233	EPA 200.8	877247
60443833005	JEC-IBA-DUP-121223	EPA 200.8	877233	EPA 200.8	877247
60443833001	IBA-1-121223	EPA 245.1	877872	EPA 245.1	877920
60443833002	IBA-2-121223	EPA 245.1	877872	EPA 245.1	877920
60443833003	IBA-3-121223	EPA 245.1	877872	EPA 245.1	877920
60443833004	IBA-4-121223	EPA 245.1	877872	EPA 245.1	877920
60443833005	JEC-IBA-DUP-121223	EPA 245.1	877872	EPA 245.1	877920
60443833001	IBA-1-121223	EPA 300.0	877737		
60443833002	IBA-2-121223	EPA 300.0	877737		
60443833003	IBA-3-121223	EPA 300.0	877737		
60443833004	IBA-4-121223	EPA 300.0	877737		
60443833005	JEC-IBA-DUP-121223	EPA 300.0	877737		

Issued By: Lenexa

Revision: 2

DC#_Title: ENV-FRM-LENE-0009_Sample

Effective Date: 01/12/2022

	ca 1		
Client Name: Evergy KG Cent	74/		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗆	Pace □ Xroads □ (Client □ Other □
Tracking #: Pac	e Shipping Label Used	i? Yes □ No □	
Custody Seal on Cooler/Box Present: Yes □ No/□	Seals intact: Yes	1 No/1	
Packing Material: Bubble Wrap ☐ Bubble Bags I	□ Foam □	None Othe	er 🗆
Thermometer Used: <u>T298</u> Type of	fice: (Wet) Blue No	ne ·	
Cooler Temperature (°C): As-read (). 6 Corr. Fact	or -0-3 Correct	ted () · 3	Date and initials of person examining contents:
Temperature should be above freezing to 6°C			PV 12/13/23
Chain of Custody present:	Yes 🗆 No 🗀 N/A		
Chain of Custody relinquished:	Yes □No □N/A		
Samples arrived within holding time:	Yes □No □N/A		
Short Hold Time analyses (<72hr):	□Yes ✓No □N/A		
Rush Turn Around Time requested:	□Yes ZNo □N/A		
Sufficient volume:	Yes No N/A		
Correct containers used:	Ayes □No □N/A		
Pace containers used:	Yes ONO ON/A		
Containers intact:	Yes No N/A		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ∕□N/A		
Filtered volume received for dissolved tests?	□Yes □No □N/A		
Sample labels match COC: Date / time / ID / analyses	Yes □No □N/A		
Samples contain multiple phases? Matrix: WT	□Yes No □N/A		
Containers requiring pH preservation in compliance?	ZYes □No □N/A		s, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	62/02	date/time added.	
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# Cyanide water sample checks:	01101		
Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Trip Blank present:	□Yes □No □N/A		
Headspace in VOA vials (>6mm):	□Yes □No □N/A		
Samples from USDA Regulated Area: State:	□Yes □No □N/A		
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No ZN/A		
Client Notification/ Resolution: Copy COC to		Field Data Required?	Y / N
Person Contacted: Date/1	ime:		
Comments/ Resolution:			
Project Manager Review:	_ Date):	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section	Δ.		Continu F	,							0 (_					
	Client Information:		Section E Required F		t Infon	mation:						tion C ce Info		on:														Т	Page:	1	of	1	
Company	EVERGY KA	NSAS CENTRAL, INC.	Report To:	Jake	Hur	mphrey					Atten	_			unts	Paya	able											_					
Address:	400 E Van B	uren St	Сору То:	Lau	ra Hi	nes, Sam	antha Ka	iney			Comp	pany N	Name:	E١	/ERG	3Y k	(AN	SAS	CE	NTR	AL,	INC	REG	UI A	TOR	Y AG	FNC	· v					
	Suite 545 Ph	oenix,AZ 85004	!	_							Addre				SEC			_	_			Ť	_	NPDE			_	_	WATE		DRINKIN	IC MATER	
Email To	skaney@hale	evaldrich.com	Purchase (Order I	No,:	10JEC-0	0000477	47		-	Pace	Quote										\dashv											
Phone:	507-251-2232	Fax:	Project Nar					Ash Pond	CCB		Refere	ence: Project	t A	lico	Spille	25.0	112 5	62	1403			-		UST	_		RCRA	4			OTHER		
	ed Due Date/TAT:				JLC	mactive	DOLLOITI 7	ASII FOIIG	COR		Manag	ger:				əı, ə	713-0	000-	1403			_	Site	Loca	ition		K	s					
request	ed bue bate/1A1.		Project Nu	iliber.							Pace	Profile	#. 9	657,	2									STA		L							
					_					_	_	_						1			uest	ed A	naly	sis F	ilter	ed (\	/N)						
	Section D Required Client Informati	on <u>MATRIX</u> DRINKING WATER	CODE	codes to left)	C=COMP)		COLL	ECTED		,		L	Pi	rese	rvativ	es.		N/A	N	N	N	N	N I	V.									
		WATER WASTE WATER PRODUCT SOIL/SOLID OIL	WT WW P SL OL	(see valid code	(G=GRAB C=	COMP STA		COMPO: END/GR	SITE RAB	COLLECTION								L	 a	8									(X/N)				
	SAMPL (A-Z, 0-9 Sample IDs MUST	EID WIPE AIR 7,-) OTHER	WP AR OT TS		TYPE (G=					TEMP AT CO	TAINERS	pe						s Test	8 2	As,Cd,C	Se,TI		<u>ا</u>	apud					Chlorine (Y/N)				
ITEM #	·			MATRIX CODE	SAMPLE TY	DATE	TIME	DATE	TIME	SAMPLE TE	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	<u> </u>	NaOH	Na ₂ S ₂ O ₃	Methanol	Analysis	200.7 Ba.	200.8 Sb,As,Cd,Co	200.8 Mo,	45.1 Hg	6010 Lithium	Source Figure					Residual ((0)	1438	33 No./ Lab I.D.	
1		IBA-1-121223		WT	G	DATE	TIME	12/12/23	9:50		2	1	7	\neg	Ħ	7	+	+=	X	$\overline{}$	X			×	H	+	+	+	╁	race	rioject	10.7 Lab 1.D.	
2		IBA-2-121223		WT.	G	22	12	12/12/23	10:35		2	1	1		Ħ	\forall	+	1	Î		x		_	x T	\vdash	\dashv	\dashv	+	\vdash				
3		IBA-3-121223		WT	G	121		12/12/23	11:15	1.	2	1	1		\forall	\forall		1	x		x			×		\dashv		╈	\Box				
4		IBA-4-121223		WT	G			12/12/23	12:15		2	11	1		Ħ	7	+	1	X		X			×	T	\exists	_	+	\Box				
5	JEC	C-IBA-DUP-121223		WT		925		12/12/23	11:15		2	+	1		Ħ	7	_	1	X		1		_	x	T	\dashv	+	+	\Box				
6											Ī	\dagger	T		Ħ	\forall	1	1				Ĥ					1		Ħ				
7												\sqcap	7	1	П	T	T	1			T		7	1	T	T	7	✝	П				
8				П						П	Т	Ħ	7	1	Ħ	\neg	1	1	\vdash	T		\dashv	\neg	\top	T		_	1	\Box				
9										T		\Box	T	T	\Box	\top	T	1		T			\top	\top		\exists	1	\top	\Box				
10												П			П	\exists	T	1	Г	T			7	1	T	Ħ	7	T	Ħ	V			
11				П						T		\Box		1	П			1	Г	Т					П	П		1	Ħ				
12												П			П			1	Г				\exists						Ħ				
	ADDITIONA	L COMMENTS		REL	NQUI	SHED BY	AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION							v .		DAT	ſΕ	Т	ME	T		SAM	PLE CONDI	TIONS									
					/a++ \	/anderPut	ten / SCS		12/12/	22	1	6:00	7				51	4	Pa	(0			1	414	23	VC	. 10	To	23	Y	N	W	
					PICALL V	rander ut	len / 303		12/12/	2.0		0.00					,	,	1.5				1	n#15\n#	ر-	VV	1.5		23		,,,	Y	
Pag								R NAME A																					ပ္	no pi	dy cooler	Intact	
je 24								PRINT Nam			1111 .	t Van	nderF	utte	n	21:	D.	n	T 0	ATE	Sign	ed		9	idie-	863		\dashv	Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)	
Page 24 of 25			SIGNATURE of SAMPLER: Holl Of MM/DD/YY): 12/12/23									J s																					

Client:	Evergy	KS	Central
	- , ,		

Profile # 9657-2

Notes

Site:			

COC Line Item	Matrix	VG9H	резн	DG90	VG9U	DG9U	DG9M	DG9B	BG1U	АG1Н	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	врзғ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	MT																				i		1								
2	1																														
3																															
4																															
5	1																				V		V								
6																															
7																															
8																															
9																															
10																															
11																															
12																															

Container Codes

codes				T		T			
		Glass			Plastic		Misc.		
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic		Wipe/Swab		
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate		
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag		
OG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter		
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes		
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit		
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can		
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic				
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic				
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix		
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix		
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water		
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid		
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liguid		
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL		
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe		
			*	BP4U	125mL unpreserved plastic	DW	Drinking Water		
				BP4N	125mL HNO3 plastic				
				BP4S	125mL H2SO4 plastic				

WPDU

16oz unpresserved plstic

Work Order Number:

60443833

ATTACHMENT 2-3
March 2024 Semiannual Sampling Event
Laboratory Analytical Report

April 26, 2024

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 14, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

REVISED to include reanalysis data per client request *see narrative

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665 PM Lab Management

Alice Spiller

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17

Utah Certification #: KS000212022-13

SAMPLE SUMMARY

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60449068001	IBA-1-031324	Water	03/13/24 14:40	03/14/24 17:30
60449068002	IBA-2-031324	Water	03/13/24 15:15	03/14/24 17:30
60449068003	IBA-3-031324	Water	03/13/24 15:50	03/14/24 17:30
60449068004	IBA-4-031324	Water	03/13/24 15:45	03/14/24 17:30
60449068005	JEC-IBA-DUP-031324	Water	03/13/24 15:50	03/14/24 17:30


SAMPLE ANALYTE COUNT

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60449068001	IBA-1-031324	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL, RKA	3	PASI-K
0449068002	IBA-2-031324	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL, RKA	3	PASI-K
0449068003	IBA-3-031324	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL, RKA	3	PASI-K
0449068004	IBA-4-031324	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL, RKA	3	PASI-K
0449068005	JEC-IBA-DUP-031324	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	KVI	1	PASI-K
		SM 4500-H+B	SR1	1	PASI-K
		EPA 300.0	PL, RKA	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: April 26, 2024

Report amended to include reanalysis results for samples 60449068003 (all metals reprepped and reanalyzed) and 60449068004 (metals reprepped and reanalyzed)

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: April 26, 2024

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 887309

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60449068001,60449068002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3512189)
 - Calcium
- MS (Lab ID: 3512191)
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: April 26, 2024

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: April 26, 2024

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: April 26, 2024

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: April 26, 2024

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- IBA-1-031324 (Lab ID: 60449068001)
- IBA-2-031324 (Lab ID: 60449068002)
- IBA-3-031324 (Lab ID: 60449068003)
- IBA-4-031324 (Lab ID: 60449068004)
- JEC-IBA-DUP-031324 (Lab ID: 60449068005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: April 26, 2024

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 887345

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60449054001,60449062002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3512382)
 - Chloride
 - Sulfate
- MS (Lab ID: 3512384)
 - Sulfate
- MSD (Lab ID: 3512383)
 - Chloride

R1: RPD value was outside control limits.

- MSD (Lab ID: 3512383)
 - Chloride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Sample: IBA-1-031324	Lab ID: 604	49068001	Collected: 03/13/2	24 14:40	Received: 03	/14/24 17:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.028	mg/L	0.0050	1	03/20/24 10:10	03/26/24 17:22	7440-39-3	
Boron, Total Recoverable	0.36	mg/L	0.10	1	03/20/24 10:10	03/26/24 17:22	7440-42-8	
Calcium, Total Recoverable	277	mg/L	0.20	1	03/20/24 10:10	03/26/24 17:22	7440-70-2	M1
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	I Services -	Kansas City					
Lithium, Total Recoverable	0.016	mg/L	0.010	1	03/20/24 10:10	03/25/24 18:44	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	03/20/24 10:10	03/27/24 14:31	7440-48-4	
Molybdenum, Total Recoverable	0.0081	mg/L	0.0010	1	03/20/24 10:10	03/27/24 14:31	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	IOC					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1410	mg/L	20.0	1		03/20/24 10:41		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/19/24 10:06		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	104	mg/L	10.0	10		03/21/24 10:36	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/24 21:04	16984-48-8	
Sulfate	765	mg/L	50.0	50		03/21/24 10:49	14808-79-8	

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Sample: IBA-2-031324	Lab ID: 604	49068002	Collected: 03/13/2	24 15:15	Received: 03	/14/24 17:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.024	mg/L	0.0050	1	03/20/24 10:10	03/26/24 17:24	7440-39-3	
Boron, Total Recoverable	0.21	mg/L	0.10	1	03/20/24 10:10	03/26/24 17:24	7440-42-8	
Calcium, Total Recoverable	224	mg/L	0.20	1	03/20/24 10:10	03/26/24 17:24	7440-70-2	M1
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.020	mg/L	0.010	1	03/20/24 10:10	03/25/24 18:46	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/20/24 10:10	03/27/24 14:45	7440-48-4	
Molybdenum, Total Recoverable	0.0025	mg/L	0.0010	1	03/20/24 10:10	03/27/24 14:45	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	IOC					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1340	mg/L	20.0	1		03/20/24 10:41		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
oH at 25 Degrees C	7.2	Std. Units	0.10	1		03/19/24 10:10		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	109	mg/L	10.0	10		03/21/24 11:29	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/24 21:17	16984-48-8	
Sulfate	590	mg/L	50.0	50		03/21/24 11:43	14808-79-8	

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Sample: IBA-3-031324	Lab ID: 604	49068003	Collected: 03/13/2	24 15:50	Received: 03	3/14/24 17:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.018	mg/L	0.0050	1	04/18/24 08:04	04/18/24 13:44	7440-39-3	
Boron, Total Recoverable	0.29	mg/L	0.10	1	04/18/24 08:04	04/18/24 13:44	7440-42-8	
Calcium, Total Recoverable	261	mg/L	0.20	1	04/18/24 08:04	04/18/24 13:44	7440-70-2	
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.022	mg/L	0.010	1	04/18/24 08:04	04/18/24 13:44	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	04/18/24 08:04	04/18/24 14:03	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	04/18/24 08:04	04/18/24 14:03	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	OC					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1400	mg/L	20.0	1		03/20/24 10:41		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	0-H+B					
•	Pace Analytica	l Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/19/24 10:20		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	118	mg/L	10.0	10		03/21/24 11:56	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/24 21:30	16984-48-8	
Sulfate	683	mg/L	100	100		03/22/24 21:42	14808-79-8	

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Sample: IBA-4-031324	Lab ID: 604	49068004	Collected: 03/13/2	24 15:45	Received: 03	/14/24 17:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	l Services -	Kansas City					
Barium, Total Recoverable	0.018	mg/L	0.0050	1	03/20/24 10:10	03/26/24 17:33	7440-39-3	
Boron, Total Recoverable	0.22	mg/L	0.10	1	03/20/24 10:10	03/26/24 17:33	7440-42-8	
Calcium, Total Recoverable	105	mg/L	0.20	1	03/20/24 10:10	03/26/24 17:33	7440-70-2	
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.032	mg/L	0.010	1	03/20/24 10:10	03/25/24 18:55	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	04/18/24 08:04	04/18/24 14:12	7440-48-4	
Molybdenum, Total Recoverable	0.0018	mg/L	0.0010	1	04/18/24 08:04	04/18/24 14:12	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	10C					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	608	mg/L	10.0	1		03/20/24 10:41		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
	Pace Analytica	l Services -	Kansas City					
oH at 25 Degrees C	7.2	Std. Units	0.10	1		03/19/24 10:16		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	17.6	mg/L	1.0	1		03/22/24 21:55	16887-00-6	
Fluoride	0.48	mg/L	0.20	1		03/22/24 21:55	16984-48-8	
Sulfate	175	mg/L	10.0	10		03/21/24 12:23	14808-79-8	

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Sample: JEC-IBA-DUP-031324	Lab ID: 604	49068005	Collected: 03/13/2	24 15:50	Received: 03	/14/24 17:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.016	mg/L	0.0050	1	03/20/24 10:10	03/26/24 17:36	7440-39-3	
Boron, Total Recoverable	0.28	mg/L	0.10	1	03/20/24 10:10	03/26/24 17:36	7440-42-8	
Calcium, Total Recoverable	252	mg/L	0.20	1	03/20/24 10:10	03/26/24 17:36	7440-70-2	
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.019	mg/L	0.010	1	03/20/24 10:10	03/25/24 18:58	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	03/20/24 10:10	03/27/24 14:58	7440-48-4	
Molybdenum, Total Recoverable	0.0024	mg/L	0.0010	1	03/20/24 10:10	03/27/24 14:58	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	10C					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1380	mg/L	20.0	1		03/20/24 10:41		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/19/24 10:22		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	136	mg/L	10.0	10		03/21/24 12:50	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/24 22:08	16984-48-8	
Sulfate	681	mg/L	100	100		03/22/24 22:21	14808-79-8	

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Barium Boron Calcium

QC Batch: 887309 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068001, 60449068002, 60449068004, 60449068005

METHOD BLANK: 3512187 Matrix: Water

Associated Lab Samples: 60449068001, 60449068002, 60449068004, 60449068005

Parameter	Units	Result	Reporting Limit	Analyzed	Qualifiers
	mg/L	<0.0050	0.0050	03/26/24 17:17	
	mg/L	< 0.10	0.10	03/26/24 17:17	
1	mg/L	< 0.20	0.20	03/26/24 17:17	

LABORATORY CONTROL SAMPLE: 3512188

Davamatan	Llaita	Spike	LCS	LCS	% Rec	O Iifi
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	1	1.0	100	85-115	
Boron	mg/L	1	0.98	98	85-115	
Calcium	mg/L	10	10.7	107	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3512	189	3512190												
			MS	MSD												
		60449068002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max					
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD RPD Qua		Qual				
Barium	mg/L	0.024	1	1	0.99	1.0	96	97	70-130	1	20					
Boron	mg/L	0.21	1	1	1.2	1.2	96	97	70-130	1	20					
Calcium	mg/L	224	10	10	227	231	36	76	70-130	2	20	M1				

MATRIX SPIKE SAMPLE:	3512191						
		60449068001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	0.028	1	1.0	102	70-130	
Boron	mg/L	0.36	1	1.6	125	70-130	
Calcium	mg/L	277	10	132	-1450	70-130 N	<i>I</i> 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

JEC Inactive Bottom Ash Pond-Revised Report Project:

Pace Project No.: 60449068

QC Batch Method:

QC Batch:

891020 EPA 200.7 Analysis Method:

EPA 200.7

Analysis Description:

200.7 Metals, Total

Laboratory:

Pace Analytical Services - Kansas City

Qualifiers

Associated Lab Samples: 60449068003

METHOD BLANK:

Date: 04/26/2024 04:14 PM

Matrix: Water

Associated Lab Samples:

Parameter

60449068003

Blank Reporting Result Limit Analyzed

Barium mg/L < 0.0050 0.0050 04/18/24 13:40 Boron <0.10 0.10 04/18/24 13:40 mg/L mg/L 04/18/24 13:40 Calcium < 0.20 0.20

Units

LABORATORY CONTROL SAMPLE: 3526510

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Barium 1 1.0 103 85-115 mg/L Boron mg/L 1.0 100 85-115 1 10 Calcium mg/L 10.7 107 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3526511 3526512 MS MSD 60449052003 MSD Spike Spike MS MS MSD % Rec Max Qual Parameter Conc. Result % Rec % Rec **RPD** RPD Units Result Conc. Result Limits 0.019 20 Barium 1 1 1.0 1.0 100 99 70-130 1 mg/L Boron mg/L 3.6 1 1 4.6 4.6 102 96 70-130 1 20 Calcium mg/L 84.1 10 10 94.9 93.4 108 92 70-130 2 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

QC Batch: 887308 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068001, 60449068002, 60449068005

METHOD BLANK: 3512183 Matrix: Water

Associated Lab Samples: 60449068001, 60449068002, 60449068005

 Parameter
 Units
 Blank Result Result
 Reporting Limit
 Analyzed Analyzed
 Qualifiers

 mg/L
 <0.0010</td>
 0.0010
 03/27/24 14:26

 Cobalt
 mg/L
 <0.0010</th>
 0.0010
 03/27/24 14:26

 Molybdenum
 mg/L
 <0.0010</td>
 0.0010
 03/27/24 14:26

LABORATORY CONTROL SAMPLE: 3512184

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cobalt 0.04 0.041 102 85-115 mg/L Molybdenum mg/L 0.04 0.040 99 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3512185 3512186 MS MSD 60449068001 Spike Spike MS MSD MS MSD % Rec Max Parameter RPD Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Cobalt mg/L 0.0015 0.04 0.04 0.042 0.041 101 70-130 2 20 Molybdenum 0.0081 0.04 0.04 0.050 0.049 105 103 70-130 20 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

QC Batch: 891017 Analysis Method: QC Batch Method: EPA 200.8 Analysis Descript

Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

EPA 200.8

Associated Lab Samples: 60449068003, 60449068004

METHOD BLANK: 3526505 Matrix: Water

Associated Lab Samples: 60449068003, 60449068004

Parameter Units Result Limit Analyzed Qualifiers

LABORATORY CONTROL SAMPLE: 3526506

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cobalt 0.04 0.039 98 85-115 mg/L Molybdenum mg/L 0.04 0.040 99 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3526507 3526508 MS MSD 60449068003 Spike Spike MS MSD MS MSD % Rec Max Parameter RPD Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Cobalt mg/L 0.0012 0.04 0.04 0.041 0.041 100 70-130 20 Molybdenum 0.0023 0.04 0.04 0.043 0.043 101 101 70-130 0 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Lithium

Date: 04/26/2024 04:14 PM

QC Batch: 887310 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068001, 60449068002, 60449068004, 60449068005

METHOD BLANK: 3512194 Matrix: Water
Associated Lab Samples: 60449068001, 60449068002, 60449068004, 60449068005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 03/25/24 18:39

LABORATORY CONTROL SAMPLE: 3512195

 Parameter
 Units
 Spike Conc.
 LCS Result
 LCS % Rec Limits
 Qualifiers

 mg/L
 1
 0.95
 95
 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3512196 3512197

MS MSD

60449068002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.020 0.93 20 Lithium mg/L 0.97 91 95 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

QC Batch: 892052 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068003

METHOD BLANK: 3530478 Matrix: Water

Associated Lab Samples: 60449068003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 04/18/24 13:40

LABORATORY CONTROL SAMPLE: 3530479

Spike LCS LCS % Rec Parameter Conc. Result % Rec Limits Qualifiers Units Lithium mg/L 1.0 103 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

QC Batch: 887325 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068001, 60449068002, 60449068003, 60449068004, 60449068005

METHOD BLANK: 3512256 Matrix: Water

Associated Lab Samples: 60449068001, 60449068002, 60449068003, 60449068004, 60449068005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/20/24 10:40

LABORATORY CONTROL SAMPLE: 3512257

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 2000 1890 94 80-120

SAMPLE DUPLICATE: 3512258

Date: 04/26/2024 04:14 PM

60449066004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1460 **Total Dissolved Solids** mg/L 1510 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

QC Batch: 887127 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068001, 60449068002, 60449068003, 60449068004, 60449068005

SAMPLE DUPLICATE: 3511675

Date: 04/26/2024 04:14 PM

60449064001 Dup Max Parameter Units Result RPD RPD Qualifiers Result pH at 25 Degrees C 6.9 7.1 2 5 H6 Std. Units

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1400

QUALITY CONTROL DATA

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

LABORATORY CONTROL SAMPLE:

Date: 04/26/2024 04:14 PM

QC Batch: 887345 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60449068001, 60449068002, 60449068003, 60449068004, 60449068005

METHOD BLANK: 3512380 Matrix: Water

3512381

Associated Lab Samples: 60449068001, 60449068002, 60449068003, 60449068004, 60449068005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/21/24 08:49	
Fluoride	mg/L	< 0.20	0.20	03/21/24 08:49	
Sulfate	mg/L	<1.0	1.0	03/21/24 08:49	

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 4.9 98 90-110

 Chloride
 mg/L
 5
 4.9
 98
 90-110

 Fluoride
 mg/L
 2.5
 2.5
 99
 90-110

 Sulfate
 mg/L
 5
 5.1
 101
 90-110

		60449054001	Spike	Spike	IVIS	เพอบ	IVIS	MSD	% Rec		wax	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	56600	25000	25000	85700	54600	116	-8	80-120	44	15 I	M1,R1
Fluoride	mg/L	<1.2	12500	12500	13900	13600	111	109	80-120	2	15	
Sulfate	mg/L	3590	2500	2500	6750	6040	126	98	80-120	11	15 N	M1

MATRIX SPIKE SAMPLE: 3512384 60449062002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chloride mg/L 54.0 50 110 112 80-120 Fluoride mg/L ND 25 28.1 107 80-120 Sulfate mg/L 2160 1000 3810 165 80-120 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/26/2024 04:14 PM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC Inactive Bottom Ash Pond-Revised Report

Pace Project No.: 60449068

Date: 04/26/2024 04:14 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60449068001 60449068002	IBA-1-031324 IBA-2-031324	EPA 200.7 EPA 200.7	887309 887309	EPA 200.7 EPA 200.7	887359 887359
60449068003	IBA-3-031324	EPA 200.7	891020	EPA 200.7	891034
60449068004 60449068005	IBA-4-031324 JEC-IBA-DUP-031324	EPA 200.7 EPA 200.7	887309 887309	EPA 200.7 EPA 200.7	887359 887359
60449068001 60449068002	IBA-1-031324 IBA-2-031324	EPA 3010 EPA 3010	887310 887310	EPA 6010 EPA 6010	887360 887360
60449068003	IBA-3-031324	EPA 3010	892052	EPA 6010	892054
60449068004 60449068005	IBA-4-031324 JEC-IBA-DUP-031324	EPA 3010 EPA 3010	887310 887310	EPA 6010 EPA 6010	887360 887360
60449068001 60449068002	IBA-1-031324 IBA-2-031324	EPA 200.8 EPA 200.8	887308 887308	EPA 200.8 EPA 200.8	887358 887358
60449068003 60449068004	IBA-3-031324 IBA-4-031324	EPA 200.8 EPA 200.8	891017 891017	EPA 200.8 EPA 200.8	891033 891033
60449068005	JEC-IBA-DUP-031324	EPA 200.8	887308	EPA 200.8	887358
60449068001 60449068002 60449068003 60449068004 60449068005	IBA-1-031324 IBA-2-031324 IBA-3-031324 IBA-4-031324 JEC-IBA-DUP-031324	SM 2540C SM 2540C SM 2540C SM 2540C SM 2540C	887325 887325 887325 887325 887325		
60449068001 60449068002 60449068003 60449068004 60449068005	IBA-1-031324 IBA-2-031324 IBA-3-031324 IBA-4-031324 JEC-IBA-DUP-031324	SM 4500-H+B SM 4500-H+B SM 4500-H+B SM 4500-H+B SM 4500-H+B	887127 887127 887127 887127 887127		
60449068001 60449068002 60449068003 60449068004 60449068005	IBA-1-031324 IBA-2-031324 IBA-3-031324 IBA-4-031324 JEC-IBA-DUP-031324	EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0	887345 887345 887345 887345 887345		

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample

WO#:60449068

Revision: 2 Effective Date: 01/12/2022 Client Name: VIA 🗆 Xroads □ Client ☑ Courier: FedEx □ UPS [Clay □ PEX ECI 🗆 Pace No/ Yes □ Tracking #: Pace Shipping Label Used? No 1 3-15-24 Custody Seal on Cooler/Box Present: Yes [7] No □ Seals intact: Yes Bubble Wrap □ Bubble Bags □ None □ Foam Packing Material: 1208 Thermometer Used: Type of Ice: (Wet) Blue None Date and initials of person examining contents: As-read 2.8 Cooler Temperature (°C): Corr. Factor 0.3 Corrected 3.5 Temperature should be above freezing to 6°C Chain of Custody present: **Z**Yes □No □N/A Chain of Custody relinquished: Yes □No □N/A □N/A Samples arrived within holding time: ✓ Yes □ No □Yes □N/A Short Hold Time analyses (<72hr): □Yes ☑No □n/a Rush Turn Around Time requested: □Yes □No □N/A Sufficient volume: ☑Yes □No □N/A Correct containers used: ☑Yes □No □N/A Pace containers used: ∐Yes □No □N/A Containers intact: ☑Ñ/A □Yes □No... Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs? □**N**I/A ☐Yes ☐No Filtered volume received for dissolved tests? Yes □No □N/A Sample labels match COC: Date / time / ID / analyses □Yes ZNo □N/A Samples contain multiple phases? Matrix: List sample IDs, volumes, lot #'s of preservative and the ✓ Yes □ No □N/A Containers requiring pH preservation in compliance? date/time added. (HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: Cyanide water sample checks: □Yes □No Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve) □Yes □No □**/**N/A Trip Blank present: ☐Yes ☐No **⊠**N/A □Yes □No Headspace in VOA vials (>6mm): ☐Yes ☐No Samples from USDA Regulated Area: State: Additional labels attached to 5035A / TX1005 vials in the field? ☐Yes ☐No **Ď**N/A Copy COC to Client? Client Notification/ Resolution: Ν Field Data Required? Y / N Person Contacted: Date/Time: Comments/ Resolution:

Date:

Project Manager Review:

Pace® Location Reques Pace Analytical Kansas	ited (City/State)	CHAIN-OF-CUSTODY Analytical Request Document							LAB USE ONLY- Affix Workorder/Login Label Here																						
9608 Loiret Blvd., Lenexa, K	S 66219			Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields								200	然回																		
Company Name: Evergy Kansas Central, Ir	nc.			Contact/Report 1	o: Jake Hu	mphrey					1			3	(600	UIC I	90	G 8	>											
Street Address: 818 S Kansas Avenue, To	peka, KS 66612			Phone #:	(913)63	4-0605									`	20	101	70	100	1											
				E-Mail:	jake.hu	mphrey@evergy.	com							A	Scar	n QR C	Code fo	or instru	uctions												
				Cc E-Mail:	skaney(@haleyaldrich.co	m																								
Customer Project #:											Specify Container Size ** **Container Size: (1) 1L, (2) 500mL, (3) 250mL,																				
Project Name: JEC Inactive Bottom Ash	Pond			Invoice To:	Jeffrey (Center					3	2	3			T				25mL, (5) 100mL erraCore, (9) 90r	., (6) 40mL vial, (7) mL. (10) Other) EnCore, (8)									
1				Invoice E-Mail:	evergya	p@onlinecapture	ecenter.com	1					Ident	ify Container	Preserv	ative Ty	pe***				Types: (1) None, (2	2) HNO3 (3)									
Site Collection Info/Facility ID (as applicable):				Purchase Order #	(if WSTR-2	000095397					2	1	1						H2	2SO4, (4) HCl, (5	i) NaOH, (6) Zn Aci	cetate, (7)									
				applicable):										Analysis Requested						eOH, (11) Other	Thiosulfate, (9) As	scorbic Acid, (10									
Time Zone Collected: [] AK [] PT []	MT [X]CT	1 10	·	Quote #: County / State or	:=:= = f1-/	-). 1/					-									Proj. Mgr:		5									
Data Deliverables:		am (DW		county / state or c.) as applicable:	Reportab						6010									Alice Spil		Lied F									
		J (D.11	, 1151MV E	and an abbuttable.	Reportati	ne [] res [A	INO				9 0	Solids							>	AcctNum /	Client ID:	conformance identified for									
[] Level II [] Level IV		Rus	sh (Pre-a	pproval require	d):	DW PWSI	D # or WW Pe	rmit # as	applicable		Co,Mo	ဖို							ő	Table #:											
[] EQUIS		[]10	ay [] 2	Day [] 3 Day [] Other						200.8	Š	4						l Us												
[] Other	Date Results Requested:					Field Filtered (if ap Analysis:	plicable); [] Yes	[X]No		2 2	Total Dissolved	CI,F,S04							Profile / Ter	nplate:										
 Matrix Codes (Insert in Matrix box below): Drink 	king Water (DW), G	Fround V	Vater (GW	/), Waste Water (V	VW), Product (P), Soil/Solid (SS), Oi	l (OL), Wipe (WP), Ti	ssue (TS),	Bioassay	,Ca,Ba;	<u></u>	l P							Prelog / Bot	tle Ord. ID:	—— jē									
(B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (SL), Cauli	k (CK), L									Ö,	Þ	0.0							EZ 3080		vation									
Customer Sample ID	ľ	Matrix *	Matrix *	Matrix *	Matrix *	Matrix *	/latrix *	Matrix *	Matrix *	Matrix *	Matrix *	Comp / Grab	Composi	Time	Collected or Con	nposite End Time	# Cont.	Res. Cl	Units	200.7	2540C	рН, 300.0							Samp	ie Commen	Preservation non-
IBA-1-031324		WT	Grab			3/13/2024	1440	3	incadita	12/	X	X	X		+				+		30.00										
	-					5/15/2021	1440	,			-	_			-				_												
IBA-2-031324		WT	Grab			3/13/2024	1515	3		:#5	X	Х	X																		
IBA-3-031324		WT	Grab	3		3/13/2024	1550	3		:=:	X	Х	Х																		
IBA-4-031324		WT	Grab	7 2 :	*	3/13/2024	1545	3	*	3	Х	х	Х																		
JEC-IBA-DUP-031324		wt	Grab	3 €0	(=)	3/13/2024	1550	3	-	327	х	х	Х																		
																			\dashv												
								-					_		+				-												
															_				_												
								•																							
Additional Instructions from Pace®:					Collected By:		Matt Van	dorBut	an		Custor	ner Rer	narks /	Special Cond	itions / 1	Possible	Hazard:	s:													
					(Printed Nam	ie)	Matt. Val.	iderrati	ien.																						
					Signature:						# Co	olers:		129	g	Correc	tion Facto	or (*C):	Obs. Ter	(°C) E	orrected Temp. (*	C) On Ice:									
Reiinquished by/Company, (Signature)	7 SCS Engir	neers	Date/Time:	03/14/2024 / 1	730	Received by/Company	: (Signature)		SC	Pa	Ce			Date/Time:	£121	4	173	ا ط	Tracking Nu		- 4										
Relinquished by/Company: (Signature)			Date/Time:			Received by/Company	: (Signature)				_			Date/Time:					Delivered	by: [] In- P	erson [] Co	urier									
Reliniquished by/Company: (Signature)			Date/Time:			Received by/Company	: (Signature)							Date/Time:				-													
Relinduished by/Company: (Signature)																			[] FedEX [] UPS []	Other									
Reli p uished by/Company: (Signature) O			Date/Time:			Received by/Company	: (Signature)							Date/Time:					Page:	1	of 1	ı									
Cultural tring a gamenta suin this shain of suchash,		5:1 0 8						141									**************************************														